International Journal of Computer Science & Network Security
/
제22권6호
/
pp.230-240
/
2022
Sharing of online videos via internet is an emerging and important concept in different types of applications like surveillance and video mobile search in different web related applications. So there is need to manage personalized web video retrieval system necessary to explore relevant videos and it helps to peoples who are searching for efficient video relates to specific big data content. To evaluate this process, attributes/features with reduction of dimensionality are computed from videos to explore discriminative aspects of scene in video based on shape, histogram, and texture, annotation of object, co-ordination, color and contour data. Dimensionality reduction is mainly depends on extraction of feature and selection of feature in multi labeled data retrieval from multimedia related data. Many of the researchers are implemented different techniques/approaches to reduce dimensionality based on visual features of video data. But all the techniques have disadvantages and advantages in reduction of dimensionality with advanced features in video retrieval. In this research, we present a Novel Intent based Dimension Reduction Semi-Supervised Learning Approach (NIDRSLA) that examine the reduction of dimensionality with explore exact and fast video retrieval based on different visual features. For dimensionality reduction, NIDRSLA learns the matrix of projection by increasing the dependence between enlarged data and projected space features. Proposed approach also addressed the aforementioned issue (i.e. Segmentation of video with frame selection using low level features and high level features) with efficient object annotation for video representation. Experiments performed on synthetic data set, it demonstrate the efficiency of proposed approach with traditional state-of-the-art video retrieval methodologies.
인터넷 상의 전자 상거래 시스템의 인기는 나날이 높아지고 있는데, 추천 시스템은 이러한 시스템들의 핵심 기능으로서, 고객들이 선호할만한 상품을 추천함으로써 원하는 상품을 검색하기 위한 노력을 크게 경감시킨다. 협력 필터링 기법은 많은 상업용 시스템에서 성공적으로 구현되어온 추천 알고리즘이지만 메모리 기반의 구현 방식은 학계에서의 인기와 유용함에도 불구하고 참조 인접 이웃의 부정확성이 존재한다. 본 연구에서는 이러한 문제점을 해결하고자 사용자와 항목 각각의 인접 이웃을 통합하여 활용하고, 이들과의 과거 유사성 보다 최근의 유사성을 더욱 가중하여 추천 리스트 결정에 반영하는 새로운 시간 인지 협력 필터링 기법을 제안한다. 실험 평가를 통하여, 기존의 여러 방법들보다 제안 방법이 예측 정확도 측면에서 월등한 성능을 보임을 확인하였다.
Objectives: In the health care industry, the influence of online reviews is growing. As medical services are provided mainly by providers, those services have been managed by hospitals and clinics. However, direct promotions of medical services by providers are legally forbidden. Due to this reason, consumers, like patients and clients, search a lot of reviews on the Internet to get any information about hospitals, treatments, prices, etc. It can be determined that online reviews indicate the quality of hospitals, and that analysis should be done for sustainable hospital marketing. Method: Using a Python-based crawler, we collected reviews, written by real patients, who had experienced Korean medicine, about more than 14,000 reviews. To extract the most representative words, reviews were divided by positive and negative; after that reviews were pre-processed to get only nouns and adjectives to get TF(Term Frequency), DF(Document Frequency), and TF-IDF(Term Frequency - Inverse Document Frequency). Finally, to get some topics about reviews, aggregations of extracted words were analyzed by using LDA(Latent Dirichlet Allocation) methods. To avoid overlap, the number of topics is set by Davis visualization. Results and Conclusions: 6 and 3 topics extracted in each positive/negative review, analyzed by LDA Topic Model. The main factors, consisting of topics were 1) Response to patients and customers. 2) Customized treatment (consultation) and management. 3) Hospital/Clinic's environments.
본 논문은 오디오 핑거프린트 데이터 생성 방법과 이를 이용한 오디오 데이터 비교 방법에 관한 것으로서, 오디오 데이터의 특징을 이용하여 음악을 식별하는 방법을 제시한다. 일반적으로 영상인식을 위해 많이 사용되는 가우시안의 차(Difference of Gaussian, DoG)를 오디오 데이터에 적용하여 음악이 급진적으로 변하는 부분을 추출하고, 해당 위치를 핑거프린트로 정의하는 방식이다. 이렇게 만들어진 핑거프린트는 음질의 변화에 민감하지 않으며, 음악 데이터의 일정 부분만으로도 원본과 동일 위치의 핑거프린트 추출이 가능하다. 이 시스템은 기존의 주파수 영역을 이용한 시스템 보다 오디오 핑거프린트의 데이터량과 계산량을 줄여줌으로써 검색을 할 때 보다 효율적인 성능을 나타낸다. 이를 응용하여 인터넷에 유통되는 복사된 음악의 저작권 보호, 또는 음악의 메타정보 등을 사용자에게 나타낼 수 있다.
This study is to evaluate the drought-related bigdata characteristics published from South Korean by developing crawler. The 5 years (2013 ~ 2017) drought-related posted articles were collected from Korean internet search engine 'NAVER' which contains 13 main and 81 local daily newspapers. During the 5 years period, total 40,219 news articles including 'drought' word were found using crawler. To filter the homonyms liken drought to soccer goal drought in sports, money drought economics, and policy drought in politics often used in South Korea, the quality control was processed and 47.8 % articles were filtered. After, the 20,999 (52.2 %) drought news articles of this study were classified into four categories of water deficit (WD), water security and support (WSS), economic damage and impact (EDI), and environmental and sanitation impact (ESI) with 27, 15, 13, and 18 drought-related keywords in each category. The WD, WSS, EDI, and ESI occupied 41.4 %, 34.5 %, 14.8 %, and 9.3 % respectively. The drought articles were mostly posted in June 2015 and June 2017 with 22.7 % (15,097) and 15.9 % (10,619) respectively. The drought news articles were spatiotemporally compared with SPI (Standardized Precipitation Index) and RDI (Reservoir Drought Index) were calculated. They were classified into administration boundaries of 8 main cities and 9 provinces in South Korea because the drought response works based on local government unit. The space-time clustering between news articles (WD, WSS, EDI, and ESI) and indices (SPI and RDI) were tried how much they have correlation each other. The spatiotemporal clusters detection was applied using SaTScan software (Kulldorff, 2015). The retrospective and prospective cluster analyses were conducted for past and present time to understand how much they are intensive in clusters. The news articles of WD, WSS and EDI had strong clusters in provinces, and ESI in cities.
본 연구는 최초 기업공개(IPO) 이후 발생하는 공모가격의 저가발행(underpricing) 현상 및 투자자 관심(investor attention)과의 상호 작용 분석을 통해, 정보기술(IT) 기업의 IPO 이후 장·단기 성과를 분석하였다. IPO 시점의 구글 검색량으로 투자자의 관심을 측정하였을 때, 기타 제조업 또는 서비스 기업 대비 IT 기업에 대한 투자자의 관심도 증분이 상대적으로 컸으며 IT 기업에 대한 저가발행 현상도 더 심하게 나타났다. IPO 이후의 단기간 성과 분석 결과, IPO 기업에 대한 투자자 관심의 증가는 IT 및 비IT 기업의 성과에 정(+)의 영향을 줄 뿐 아니라 IPO 시점의 저가발행 정도가 클수록 투자자 관심의 효과가 증가하는 것으로 나타났다. 장기적 관점에서 볼 때, 비IT 기업의 저가발행 및 이에 동반된 투자자 관심의 증가 효과는 점차적으로 약화되는 반면 IT 기업에 대한 효과는 장기간 지속되었다. 비IT 기업과 달리, 네트워크 효과 등 산업 구조적 특성의 영향을 받는 IT 기업의 경우 저가발행 및 이와 더불어 향상된 초기 투자자 관심효과가 장기적으로 기업의 실질적 가치에 영향을 준 것으로 나타났다.
E-commerce 환경의 발전으로 소비자들은 다양한 상품들을 한 자리에서 폭 넓게 비교할 수 있게 되었다. 하지만 온라인 쇼핑몰에 올라와있는 상당량의 주요 상품 정보들이 이미지 형태이기 때문에 컴퓨터가 인지할 수 있는 텍스트 기반 검색 시스템에 반영될 수 없다는 한계가 존재한다. 이러한 한계점은 일반적으로 기존 기계학습 기술 및 OCR(Optical Character Recognition) 기술을 활용해, 이미지 형태로 된 키워드를 인식함으로써 개선할 수 있다. 그러나 기존 OCR 기술은 이미지 안에 글자가 아닌 그림이 많고 글자 크기가 작으면 낮은 인식률을 보인다는 문제가 있다. 이에 본 연구에서는 기존 기술들의 한계점을 해결하기 위하여, 딥러닝 기반 사물인식 모형 중 하나인 SSD(Single Shot MultiBox Detector)를 개조하여 이미지 형태의 상품 카탈로그 내의 텍스트 인식모형을 설계하였다. 하지만 이를 학습시키기 위한 데이터를 구축하는 데 상당한 시간과 비용이 필요했는데, 이는 지도학습의 방법론을 따르는 SSD 모형은 훈련 데이터마다 직접 정답 라벨링을 해줘야 하기 때문이다. 본 연구는 이러한 문제점을 해결하기 위해 '훈련 데이터 자동 생성 프로그램'을 함께 개발하였다. 훈련 데이터 자동 생성 프로그램을 통해 수작업으로 데이터를 만드는 것에 비하여 시간과 비용을 대폭 절감할 수 있었으며, 생성된 훈련용 데이터를 통해 모형의 인식 성능을 높일 수 있었다. 더 나아가 실험연구를 통해 자동으로 생성된 훈련 데이터의 특징별로 인식기 모형의 성능에 얼마나 큰 영향을 끼치는지 알아보고, 성능 향상에 효과적인 데이터의 특징을 분석하였다. 본 연구를 통해서 개발된 상품 카탈로그 내 텍스트 인식모형과 훈련 데이터 자동 생성 프로그램은 온라인 쇼핑몰 판매자들의 상품 정보 등록 수고를 줄여줄 수 있으며, 구매자들의 상품 검색 시 결과의 정확성을 향상시키는 데 기여할 수 있을 것으로 기대한다.
인구통계학적 정보는 디지털 마케팅의 핵심이라 할 수 있는 인터넷 사용자에 대한 타겟 마케팅 및 개인화된 광고를 위해 고려되는 가장 기초적이고 중요한 정보이다. 하지만 인터넷 사용자의 온라인 활동은 익명으로 행해지는 경우가 많기 때문에 인구통계특성 정보를 수집하는 것은 쉬운 일이 아니다. 정기적인 설문 조사를 통해 사용자들의 인구통계특성 정보를 수집할 수도 있지만 많은 비용이 들며 허위 기재 등과 같은 위험성이 존재한다. 특히, 모바일 환경에서는 대부분의 사용자들이 익명으로 활동하기 때문에 인구통계특성 정보를 수집하는 것은 더욱 더 어려워지고 있다. 반면, 인터넷 사용자의 온라인 활동을 기록한 클릭스트림 데이터는 해당 사용자의 인구통계학적 정보에 활용될 수 있다. 특히, 인터넷 사용자의 온라인 행위 특성 중 하나인 페이지뷰는 인구통계학적 정보 예측에 있어서 중요한 요인이 된다. 본 연구에서는 기존 선행 연구를 토대로 클릭스트림 데이터 분석을 통해 인터넷 사용자의 온라인 행위 특성을 추출하고 이를 해당 사용자의 인구통계학적 정보 예측에 사용한다. 또한, 1)의사결정나무를 이용한 변수 축소, 2)주성분분석을 활용한 차원축소, 3)군집분석을 활용한 변수축소의 방법을 제안하고 실험에 적용함으로써 많은 설명변수를 이용하여 예측 모델 생성 시 발생하는 차원의 저주와 과적합 문제를 해결하고 예측 모델의 정확도를 높이고자 하였다. 실험 결과, 범주의 수가 많은 다분형 종속변수에 대한 예측 모델은 모든 설명변수를 사용하여 예측 모델을 생성했을 때보다 본 연구에서 제안한 방법론들을 적용했을 때 예측 모델에 대한 정확도가 향상됨을 알 수 있었다. 본 연구는 클릭스트림 분석을 통해 추출된 인터넷 사용자의 온라인 행위는 해당 사용자의 인구통계학적 정보 예측에 활용 가능하며, 예측된 익명의 인터넷 사용자들에 대한 인구통계학적 정보를 디지털 마케팅에 활용 할 수 있다는데 의의가 있다. 또한, 제안 방법론들을 통해 어느 종속변수에 대해 어떤 방법론들이 예측 모델의 정확도를 개선하는지 확인하였다. 이는 추후 클릭스트림 분석을 활용하여 인구통계학적 정보를 예측할 때, 본 연구에서 제안한 방법론을 사용하여 보다 높은 정확도를 가지는 예측 모델을 생성 할 수 있다는데 의의가 있다.
인터넷 기술의 발전과 인터넷 상 데이터의 급속한 증가로 인해 데이터의 활용 목적에 적합한 분석방안 연구들이 활발히 진행되고 있다. 최근에는 텍스트 마이닝 기법의 활용에 대한 연구들이 이루어지고 있으며, 특히 문서 내 텍스트를 기반으로 문장이나 어휘의 긍정, 부정과 같은 극성 분포에 따라 의견을 스코어링(scoring)하는 감성분석과 관련된 연구들도 다수 이루어지고 있다. 이러한 연구의 연장선상에서, 본 연구는 인터넷 상의 특정 기업에 대한 뉴스 데이터를 수집하여 이들의 감성분석을 실시함으로써 주가의 등락에 대한 예측을 시도하였다. 개별 기업의 뉴스 정보는 해당 기업의 주가에 영향을 미치는 요인으로, 적절한 데이터 분석을 통해 주가 변동 예측에 유용하게 활용될 수 있을 것으로 기대된다. 따라서 본 연구에서는 개별 기업의 온라인 뉴스 데이터에 대한 감성분석을 바탕으로 개별 기업의 주가 변화 예측을 꾀하였다. 이를 위해, KOSPI200의 상위 종목들을 분석 대상으로 선정하여 국내 대표적 검색 포털 서비스인 네이버에서 약 2년간 발생된 개별 기업의 뉴스 데이터를 수집 분석하였다. 기업별 경영 활동 영역에 따라 기업 온라인 뉴스에 나타나는 어휘의 상이함을 고려하여 각 개별 기업의 어휘사전을 구축하여 분석에 활용함으로써 감성분석의 성능 향상을 도모하였다. 분석결과, 기업별 일간 주가 등락여부에 대한 예측 정확도는 상이했으며 평균적으로 약 56%의 예측률을 보였다. 산업 구분에 따른 주가 예측 정확도를 통하여 '에너지/화학', '생활소비재', '경기소비재'의 산업군이 상대적으로 높은 주가 예측 정확도를 보임을 확인하였으며, '정보기술'과 '조선/운송' 산업군은 주가 예측 정확도가 낮은 것으로 확인되었다. 본 논문은 온라인 뉴스 정보를 활용한 기업의 어휘사전 구축을 통해 개별 기업의 주가 등락 예측에 대한 분석을 수행하였으며, 향후 감성사전 구축 시 불필요한 어휘가 추가되는 문제점을 보완한 연구 수행을 통하여 주가 예측 정확도를 높이는 방안을 모색할 수 있을 것이다.
이 연구는 전문계 고교 학생과 교원을 대상으로 진로지도 실태 및 개선 요구 사항에 대한 학생, 교원, 학생과 교원의 인식 차이를 분석하여 이를 토대로 전문계 고교의 효율적인 진로지도 방안을 개발하는 데 기초 자료를 제공하는 것을 목적으로 한다. 설문조사 대상은 서울특별시 전문계 고교 학생과 교원을 대상으로 실시하였다. 이 연구의 결과는 다음과 같다. 첫째, 전문계 고교 진로지도 정도에 대한 학생의 인식은 미흡하다고 나타났으며, 진학지도에 비해서 취업지도가 더 미흡하다고 응답하였다. 또한 진로지도 여건에 대한 학생의 인식은 대체로 부족하다고 나타났다. 둘째, 전문계 고교 진로지도 여건에 대한 교원의 인식은 진로지도를 위한 전담교사 배치, 진로상담실, 최신 진로 정보 확보 및 활용, 진로지도를 위한 인터넷 사용가능 정보 검색 시스템은 충분하다고 응답한 반면, 진로지도를 위한 시간, 진로상담실의 운영예산, 외부 유관 기관과의 연계는 부족하다고 응답하였다. 셋째, 진로지도 여건에 대해서 전반적으로 교장, 교감, 교사 순으로 충분하다고 응답하였다. 교장은 모든 문항에서 충분하다고 인식하고 있으며, 교감은 진로상담실의 운영 예산과 외부 유관 기관과의 연계에 대해서만 부족하다고 응답하였고, 교사는 진로지도를 위한 시간, 진로상담실의 운영 예산, 외부 유관 기관과의 연계에 대해서만 부족하다고 응답하였다. 또한 교장, 교감 교사 사이의 인식 차이 분석을 통해서 진로상담실의 운영 예산을 제외하고 교장은 교사에 비해서 충분하다고 인식하고 있었다. 넷째, 진로지도 여건에 대한 학생은 모든 문항에서 부족하다고 응답했지만, 교원은 진로지도를 위한 시간을 제외한 모든 문항에서 충분하다고 인식하였다. 이중에서 가장 큰 인식의 차이를 보인 것은 인터넷 사용 가능 정보검색 시스템으로 분석되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.