• 제목/요약/키워드: Internet search

검색결과 1,637건 처리시간 0.033초

Novel Intent based Dimension Reduction and Visual Features Semi-Supervised Learning for Automatic Visual Media Retrieval

  • kunisetti, Subramanyam;Ravichandran, Suban
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.230-240
    • /
    • 2022
  • Sharing of online videos via internet is an emerging and important concept in different types of applications like surveillance and video mobile search in different web related applications. So there is need to manage personalized web video retrieval system necessary to explore relevant videos and it helps to peoples who are searching for efficient video relates to specific big data content. To evaluate this process, attributes/features with reduction of dimensionality are computed from videos to explore discriminative aspects of scene in video based on shape, histogram, and texture, annotation of object, co-ordination, color and contour data. Dimensionality reduction is mainly depends on extraction of feature and selection of feature in multi labeled data retrieval from multimedia related data. Many of the researchers are implemented different techniques/approaches to reduce dimensionality based on visual features of video data. But all the techniques have disadvantages and advantages in reduction of dimensionality with advanced features in video retrieval. In this research, we present a Novel Intent based Dimension Reduction Semi-Supervised Learning Approach (NIDRSLA) that examine the reduction of dimensionality with explore exact and fast video retrieval based on different visual features. For dimensionality reduction, NIDRSLA learns the matrix of projection by increasing the dependence between enlarged data and projected space features. Proposed approach also addressed the aforementioned issue (i.e. Segmentation of video with frame selection using low level features and high level features) with efficient object annotation for video representation. Experiments performed on synthetic data set, it demonstrate the efficiency of proposed approach with traditional state-of-the-art video retrieval methodologies.

Time-aware Collaborative Filtering with User- and Item-based Similarity Integration

  • Lee, Soojung
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권9호
    • /
    • pp.149-155
    • /
    • 2022
  • 인터넷 상의 전자 상거래 시스템의 인기는 나날이 높아지고 있는데, 추천 시스템은 이러한 시스템들의 핵심 기능으로서, 고객들이 선호할만한 상품을 추천함으로써 원하는 상품을 검색하기 위한 노력을 크게 경감시킨다. 협력 필터링 기법은 많은 상업용 시스템에서 성공적으로 구현되어온 추천 알고리즘이지만 메모리 기반의 구현 방식은 학계에서의 인기와 유용함에도 불구하고 참조 인접 이웃의 부정확성이 존재한다. 본 연구에서는 이러한 문제점을 해결하고자 사용자와 항목 각각의 인접 이웃을 통합하여 활용하고, 이들과의 과거 유사성 보다 최근의 유사성을 더욱 가중하여 추천 리스트 결정에 반영하는 새로운 시간 인지 협력 필터링 기법을 제안한다. 실험 평가를 통하여, 기존의 여러 방법들보다 제안 방법이 예측 정확도 측면에서 월등한 성능을 보임을 확인하였다.

토픽 모델링을 활용한 한의원 리뷰 분석과 마케팅 제언 (Reviews Analysis of Korean Clinics Using LDA Topic Modeling)

  • 김초명;조아람;김양균
    • 대한한의학회지
    • /
    • 제43권1호
    • /
    • pp.73-86
    • /
    • 2022
  • Objectives: In the health care industry, the influence of online reviews is growing. As medical services are provided mainly by providers, those services have been managed by hospitals and clinics. However, direct promotions of medical services by providers are legally forbidden. Due to this reason, consumers, like patients and clients, search a lot of reviews on the Internet to get any information about hospitals, treatments, prices, etc. It can be determined that online reviews indicate the quality of hospitals, and that analysis should be done for sustainable hospital marketing. Method: Using a Python-based crawler, we collected reviews, written by real patients, who had experienced Korean medicine, about more than 14,000 reviews. To extract the most representative words, reviews were divided by positive and negative; after that reviews were pre-processed to get only nouns and adjectives to get TF(Term Frequency), DF(Document Frequency), and TF-IDF(Term Frequency - Inverse Document Frequency). Finally, to get some topics about reviews, aggregations of extracted words were analyzed by using LDA(Latent Dirichlet Allocation) methods. To avoid overlap, the number of topics is set by Davis visualization. Results and Conclusions: 6 and 3 topics extracted in each positive/negative review, analyzed by LDA Topic Model. The main factors, consisting of topics were 1) Response to patients and customers. 2) Customized treatment (consultation) and management. 3) Hospital/Clinic's environments.

가우시안의 차를 이용하여 검색속도를 향상한 최소 오디오 핑거프린팅 (Search speed improved minimum audio fingerprinting using the difference of Gaussian)

  • 권진만;고일주;장대식
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권12호
    • /
    • pp.75-87
    • /
    • 2009
  • 본 논문은 오디오 핑거프린트 데이터 생성 방법과 이를 이용한 오디오 데이터 비교 방법에 관한 것으로서, 오디오 데이터의 특징을 이용하여 음악을 식별하는 방법을 제시한다. 일반적으로 영상인식을 위해 많이 사용되는 가우시안의 차(Difference of Gaussian, DoG)를 오디오 데이터에 적용하여 음악이 급진적으로 변하는 부분을 추출하고, 해당 위치를 핑거프린트로 정의하는 방식이다. 이렇게 만들어진 핑거프린트는 음질의 변화에 민감하지 않으며, 음악 데이터의 일정 부분만으로도 원본과 동일 위치의 핑거프린트 추출이 가능하다. 이 시스템은 기존의 주파수 영역을 이용한 시스템 보다 오디오 핑거프린트의 데이터량과 계산량을 줄여줌으로써 검색을 할 때 보다 효율적인 성능을 나타낸다. 이를 응용하여 인터넷에 유통되는 복사된 음악의 저작권 보호, 또는 음악의 메타정보 등을 사용자에게 나타낼 수 있다.

A Heuristic Method of In-situ Drought Using Mass Media Information

  • Lee, Jiwan;Kim, Seong-Joon
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.168-168
    • /
    • 2020
  • This study is to evaluate the drought-related bigdata characteristics published from South Korean by developing crawler. The 5 years (2013 ~ 2017) drought-related posted articles were collected from Korean internet search engine 'NAVER' which contains 13 main and 81 local daily newspapers. During the 5 years period, total 40,219 news articles including 'drought' word were found using crawler. To filter the homonyms liken drought to soccer goal drought in sports, money drought economics, and policy drought in politics often used in South Korea, the quality control was processed and 47.8 % articles were filtered. After, the 20,999 (52.2 %) drought news articles of this study were classified into four categories of water deficit (WD), water security and support (WSS), economic damage and impact (EDI), and environmental and sanitation impact (ESI) with 27, 15, 13, and 18 drought-related keywords in each category. The WD, WSS, EDI, and ESI occupied 41.4 %, 34.5 %, 14.8 %, and 9.3 % respectively. The drought articles were mostly posted in June 2015 and June 2017 with 22.7 % (15,097) and 15.9 % (10,619) respectively. The drought news articles were spatiotemporally compared with SPI (Standardized Precipitation Index) and RDI (Reservoir Drought Index) were calculated. They were classified into administration boundaries of 8 main cities and 9 provinces in South Korea because the drought response works based on local government unit. The space-time clustering between news articles (WD, WSS, EDI, and ESI) and indices (SPI and RDI) were tried how much they have correlation each other. The spatiotemporal clusters detection was applied using SaTScan software (Kulldorff, 2015). The retrospective and prospective cluster analyses were conducted for past and present time to understand how much they are intensive in clusters. The news articles of WD, WSS and EDI had strong clusters in provinces, and ESI in cities.

  • PDF

저가발행과 투자자 관심이 기업 공개 이후 장·단기 성과에 미치는 영향: IT 기업을 중심으로 (Underpricing, Investor Attention, and Post-IPO Performance: An Empirical Analysis of IT Firms)

  • 장영봉;권영옥
    • 경영정보학연구
    • /
    • 제21권2호
    • /
    • pp.51-67
    • /
    • 2019
  • 본 연구는 최초 기업공개(IPO) 이후 발생하는 공모가격의 저가발행(underpricing) 현상 및 투자자 관심(investor attention)과의 상호 작용 분석을 통해, 정보기술(IT) 기업의 IPO 이후 장·단기 성과를 분석하였다. IPO 시점의 구글 검색량으로 투자자의 관심을 측정하였을 때, 기타 제조업 또는 서비스 기업 대비 IT 기업에 대한 투자자의 관심도 증분이 상대적으로 컸으며 IT 기업에 대한 저가발행 현상도 더 심하게 나타났다. IPO 이후의 단기간 성과 분석 결과, IPO 기업에 대한 투자자 관심의 증가는 IT 및 비IT 기업의 성과에 정(+)의 영향을 줄 뿐 아니라 IPO 시점의 저가발행 정도가 클수록 투자자 관심의 효과가 증가하는 것으로 나타났다. 장기적 관점에서 볼 때, 비IT 기업의 저가발행 및 이에 동반된 투자자 관심의 증가 효과는 점차적으로 약화되는 반면 IT 기업에 대한 효과는 장기간 지속되었다. 비IT 기업과 달리, 네트워크 효과 등 산업 구조적 특성의 영향을 받는 IT 기업의 경우 저가발행 및 이와 더불어 향상된 초기 투자자 관심효과가 장기적으로 기업의 실질적 가치에 영향을 준 것으로 나타났다.

온라인 쇼핑몰에서 상품 설명 이미지 내의 키워드 인식을 위한 딥러닝 훈련 데이터 자동 생성 방안 (The way to make training data for deep learning model to recognize keywords in product catalog image at E-commerce)

  • 김기태;오원석;임근원;차은우;신민영;김종우
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.1-23
    • /
    • 2018
  • E-commerce 환경의 발전으로 소비자들은 다양한 상품들을 한 자리에서 폭 넓게 비교할 수 있게 되었다. 하지만 온라인 쇼핑몰에 올라와있는 상당량의 주요 상품 정보들이 이미지 형태이기 때문에 컴퓨터가 인지할 수 있는 텍스트 기반 검색 시스템에 반영될 수 없다는 한계가 존재한다. 이러한 한계점은 일반적으로 기존 기계학습 기술 및 OCR(Optical Character Recognition) 기술을 활용해, 이미지 형태로 된 키워드를 인식함으로써 개선할 수 있다. 그러나 기존 OCR 기술은 이미지 안에 글자가 아닌 그림이 많고 글자 크기가 작으면 낮은 인식률을 보인다는 문제가 있다. 이에 본 연구에서는 기존 기술들의 한계점을 해결하기 위하여, 딥러닝 기반 사물인식 모형 중 하나인 SSD(Single Shot MultiBox Detector)를 개조하여 이미지 형태의 상품 카탈로그 내의 텍스트 인식모형을 설계하였다. 하지만 이를 학습시키기 위한 데이터를 구축하는 데 상당한 시간과 비용이 필요했는데, 이는 지도학습의 방법론을 따르는 SSD 모형은 훈련 데이터마다 직접 정답 라벨링을 해줘야 하기 때문이다. 본 연구는 이러한 문제점을 해결하기 위해 '훈련 데이터 자동 생성 프로그램'을 함께 개발하였다. 훈련 데이터 자동 생성 프로그램을 통해 수작업으로 데이터를 만드는 것에 비하여 시간과 비용을 대폭 절감할 수 있었으며, 생성된 훈련용 데이터를 통해 모형의 인식 성능을 높일 수 있었다. 더 나아가 실험연구를 통해 자동으로 생성된 훈련 데이터의 특징별로 인식기 모형의 성능에 얼마나 큰 영향을 끼치는지 알아보고, 성능 향상에 효과적인 데이터의 특징을 분석하였다. 본 연구를 통해서 개발된 상품 카탈로그 내 텍스트 인식모형과 훈련 데이터 자동 생성 프로그램은 온라인 쇼핑몰 판매자들의 상품 정보 등록 수고를 줄여줄 수 있으며, 구매자들의 상품 검색 시 결과의 정확성을 향상시키는 데 기여할 수 있을 것으로 기대한다.

인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝 (Clickstream Big Data Mining for Demographics based Digital Marketing)

  • 박지애;조윤호
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.143-163
    • /
    • 2016
  • 인구통계학적 정보는 디지털 마케팅의 핵심이라 할 수 있는 인터넷 사용자에 대한 타겟 마케팅 및 개인화된 광고를 위해 고려되는 가장 기초적이고 중요한 정보이다. 하지만 인터넷 사용자의 온라인 활동은 익명으로 행해지는 경우가 많기 때문에 인구통계특성 정보를 수집하는 것은 쉬운 일이 아니다. 정기적인 설문 조사를 통해 사용자들의 인구통계특성 정보를 수집할 수도 있지만 많은 비용이 들며 허위 기재 등과 같은 위험성이 존재한다. 특히, 모바일 환경에서는 대부분의 사용자들이 익명으로 활동하기 때문에 인구통계특성 정보를 수집하는 것은 더욱 더 어려워지고 있다. 반면, 인터넷 사용자의 온라인 활동을 기록한 클릭스트림 데이터는 해당 사용자의 인구통계학적 정보에 활용될 수 있다. 특히, 인터넷 사용자의 온라인 행위 특성 중 하나인 페이지뷰는 인구통계학적 정보 예측에 있어서 중요한 요인이 된다. 본 연구에서는 기존 선행 연구를 토대로 클릭스트림 데이터 분석을 통해 인터넷 사용자의 온라인 행위 특성을 추출하고 이를 해당 사용자의 인구통계학적 정보 예측에 사용한다. 또한, 1)의사결정나무를 이용한 변수 축소, 2)주성분분석을 활용한 차원축소, 3)군집분석을 활용한 변수축소의 방법을 제안하고 실험에 적용함으로써 많은 설명변수를 이용하여 예측 모델 생성 시 발생하는 차원의 저주와 과적합 문제를 해결하고 예측 모델의 정확도를 높이고자 하였다. 실험 결과, 범주의 수가 많은 다분형 종속변수에 대한 예측 모델은 모든 설명변수를 사용하여 예측 모델을 생성했을 때보다 본 연구에서 제안한 방법론들을 적용했을 때 예측 모델에 대한 정확도가 향상됨을 알 수 있었다. 본 연구는 클릭스트림 분석을 통해 추출된 인터넷 사용자의 온라인 행위는 해당 사용자의 인구통계학적 정보 예측에 활용 가능하며, 예측된 익명의 인터넷 사용자들에 대한 인구통계학적 정보를 디지털 마케팅에 활용 할 수 있다는데 의의가 있다. 또한, 제안 방법론들을 통해 어느 종속변수에 대해 어떤 방법론들이 예측 모델의 정확도를 개선하는지 확인하였다. 이는 추후 클릭스트림 분석을 활용하여 인구통계학적 정보를 예측할 때, 본 연구에서 제안한 방법론을 사용하여 보다 높은 정확도를 가지는 예측 모델을 생성 할 수 있다는데 의의가 있다.

온라인 언급이 기업 성과에 미치는 영향 분석 : 뉴스 감성분석을 통한 기업별 주가 예측 (Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news)

  • 정지선;김동성;김종우
    • 지능정보연구
    • /
    • 제21권4호
    • /
    • pp.37-51
    • /
    • 2015
  • 인터넷 기술의 발전과 인터넷 상 데이터의 급속한 증가로 인해 데이터의 활용 목적에 적합한 분석방안 연구들이 활발히 진행되고 있다. 최근에는 텍스트 마이닝 기법의 활용에 대한 연구들이 이루어지고 있으며, 특히 문서 내 텍스트를 기반으로 문장이나 어휘의 긍정, 부정과 같은 극성 분포에 따라 의견을 스코어링(scoring)하는 감성분석과 관련된 연구들도 다수 이루어지고 있다. 이러한 연구의 연장선상에서, 본 연구는 인터넷 상의 특정 기업에 대한 뉴스 데이터를 수집하여 이들의 감성분석을 실시함으로써 주가의 등락에 대한 예측을 시도하였다. 개별 기업의 뉴스 정보는 해당 기업의 주가에 영향을 미치는 요인으로, 적절한 데이터 분석을 통해 주가 변동 예측에 유용하게 활용될 수 있을 것으로 기대된다. 따라서 본 연구에서는 개별 기업의 온라인 뉴스 데이터에 대한 감성분석을 바탕으로 개별 기업의 주가 변화 예측을 꾀하였다. 이를 위해, KOSPI200의 상위 종목들을 분석 대상으로 선정하여 국내 대표적 검색 포털 서비스인 네이버에서 약 2년간 발생된 개별 기업의 뉴스 데이터를 수집 분석하였다. 기업별 경영 활동 영역에 따라 기업 온라인 뉴스에 나타나는 어휘의 상이함을 고려하여 각 개별 기업의 어휘사전을 구축하여 분석에 활용함으로써 감성분석의 성능 향상을 도모하였다. 분석결과, 기업별 일간 주가 등락여부에 대한 예측 정확도는 상이했으며 평균적으로 약 56%의 예측률을 보였다. 산업 구분에 따른 주가 예측 정확도를 통하여 '에너지/화학', '생활소비재', '경기소비재'의 산업군이 상대적으로 높은 주가 예측 정확도를 보임을 확인하였으며, '정보기술'과 '조선/운송' 산업군은 주가 예측 정확도가 낮은 것으로 확인되었다. 본 논문은 온라인 뉴스 정보를 활용한 기업의 어휘사전 구축을 통해 개별 기업의 주가 등락 예측에 대한 분석을 수행하였으며, 향후 감성사전 구축 시 불필요한 어휘가 추가되는 문제점을 보완한 연구 수행을 통하여 주가 예측 정확도를 높이는 방안을 모색할 수 있을 것이다.

전문계 고교 진로지도 실태에 대한 학생과 교원의 인식 비교 연구 (A Comparative Study on the Awareness of between Students and Teachers on the Actual Condition of career Guidance at Vocational High Schools)

  • 이병욱;정현옥;이찬주
    • 대한공업교육학회지
    • /
    • 제37권1호
    • /
    • pp.87-106
    • /
    • 2012
  • 이 연구는 전문계 고교 학생과 교원을 대상으로 진로지도 실태 및 개선 요구 사항에 대한 학생, 교원, 학생과 교원의 인식 차이를 분석하여 이를 토대로 전문계 고교의 효율적인 진로지도 방안을 개발하는 데 기초 자료를 제공하는 것을 목적으로 한다. 설문조사 대상은 서울특별시 전문계 고교 학생과 교원을 대상으로 실시하였다. 이 연구의 결과는 다음과 같다. 첫째, 전문계 고교 진로지도 정도에 대한 학생의 인식은 미흡하다고 나타났으며, 진학지도에 비해서 취업지도가 더 미흡하다고 응답하였다. 또한 진로지도 여건에 대한 학생의 인식은 대체로 부족하다고 나타났다. 둘째, 전문계 고교 진로지도 여건에 대한 교원의 인식은 진로지도를 위한 전담교사 배치, 진로상담실, 최신 진로 정보 확보 및 활용, 진로지도를 위한 인터넷 사용가능 정보 검색 시스템은 충분하다고 응답한 반면, 진로지도를 위한 시간, 진로상담실의 운영예산, 외부 유관 기관과의 연계는 부족하다고 응답하였다. 셋째, 진로지도 여건에 대해서 전반적으로 교장, 교감, 교사 순으로 충분하다고 응답하였다. 교장은 모든 문항에서 충분하다고 인식하고 있으며, 교감은 진로상담실의 운영 예산과 외부 유관 기관과의 연계에 대해서만 부족하다고 응답하였고, 교사는 진로지도를 위한 시간, 진로상담실의 운영 예산, 외부 유관 기관과의 연계에 대해서만 부족하다고 응답하였다. 또한 교장, 교감 교사 사이의 인식 차이 분석을 통해서 진로상담실의 운영 예산을 제외하고 교장은 교사에 비해서 충분하다고 인식하고 있었다. 넷째, 진로지도 여건에 대한 학생은 모든 문항에서 부족하다고 응답했지만, 교원은 진로지도를 위한 시간을 제외한 모든 문항에서 충분하다고 인식하였다. 이중에서 가장 큰 인식의 차이를 보인 것은 인터넷 사용 가능 정보검색 시스템으로 분석되었다.