• Title/Summary/Keyword: Internet of small things

Search Result 134, Processing Time 0.028 seconds

Sustainable Industrial Value Creation in SMEs: A Comparison between Industry 4.0 and Made in China 2025

  • Muller, Julian M.;Voigt, Kai-Ingo
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.659-670
    • /
    • 2018
  • The Industrial Internet of Things (IIoT) confronts industrial manufactures with economic, ecological, as well as social benefits and challenges, referring to the Triple Bottom Line of sustainability. So far, research has mainly investigated its dimensions in isolation or economic aspects have not been compared with ecological and social perspectives. Further, research misses studies that are devoted to the special characteristics and requirements of Small and Medium-sized Enterprises (SMEs). This study aims to contribute to close this research gap, providing a research context that encompasses all three dimensions of sustainability. The results are based on data obtained from 329 SMEs, 222 in Germany and 107 in China, therefore allowing for a comparison of the concepts "Industrie 4.0" and "Made in China 2025" in the context of SMEs. In general, German SMEs expect a lower impact through "Industrie 4.0", perceiving the concept as more beneficial for larger enterprises. We further find that Chinese SMEs foremost see social benefits. Challenges whilst introducing "Industrie 4.0"by German SMEs as well as several frame conditions are perceived more relevant than for "Made in China 2025", as seen by Chinese SMEs. The paper closes with implications for research and practice based on these findings.

Analytical model for mean web object transfer latency estimation in the narrowband IoT environment (협대역 사물 인터넷 환경에서 웹 객체의 평균 전송시간을 추정하기 위한 해석적 모델)

  • Lee, Yong-Jin
    • Journal of Internet of Things and Convergence
    • /
    • v.1 no.1
    • /
    • pp.1-4
    • /
    • 2015
  • This paper aims to present the mathematical model to find the mean web object transfer latency in the slow-start phase of TCP congestion control mechanism, which is one of the main control techniques of Internet. Mean latency is an important service quality measure of end-user in the network. The application area of the proposed latency model is the narrowband environment including multi-hop wireless network and Internet of Things(IoT), where packet loss occurs in the slow-start phase only due to small window. The model finds the latency considering initial window size and the packet loss rate. Our model shows that for a given packet loss rate, round trip time and initial window size mainly affect the mean web object transfer latency. The proposed model can be applied to estimate the mean response time that end user requires in the IoT service applications.

Key-based dynamic S-Box approach for PRESENT lightweight block cipher

  • Yogaraja CA;Sheela Shobana Rani K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3398-3415
    • /
    • 2023
  • Internet-of-Things (IoT) is an emerging technology that interconnects millions of small devices to enable communication between the devices. It is heavily deployed across small scale to large scale industries because of its wide range of applications. These devices are very capable of transferring data over the internet including critical data in few applications. Such data is exposed to various security threats and thereby raises privacy-related concerns. Even devices can be compromised by the attacker. Modern cryptographic algorithms running on traditional machines provide authentication, confidentiality, integrity, and non-repudiation in an easy manner. IoT devices have numerous constraints related to memory, storage, processors, operating systems and power. Researchers have proposed several hardware and software implementations for addressing security attacks in lightweight encryption mechanism. Several works have made on lightweight block ciphers for improving the confidentiality by means of providing security level against cryptanalysis techniques. With the advances in the cipher breaking techniques, it is important to increase the security level to much higher. This paper, focuses on securing the critical data that is being transmitted over the internet by PRESENT using key-based dynamic S-Box. Security analysis of the proposed algorithm against other lightweight block cipher shows a significant improvement against linear and differential attacks, biclique attack and avalanche effect. A novel key-based dynamic S-Box approach for PRESENT strongly withstands cryptanalytic attacks in the IoT Network.

Horizontal Integration between Cyber Physical System Based on Industry 4.0 and Manufacture Execution Systems through Middleware Building (인더스트리4.0 기반 사이버물리시스템과 생산관리시스템간의 미들웨어 구축을 통한 수평적 통합)

  • Kim, Dae-Geun;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1484-1493
    • /
    • 2014
  • Recently, Industry 4.0 (next generation industrial revolution) designed by Germany to retain initiative in manufacturing business is actively studied. Goal of Industry 4.0 is 'Smart factory' which manages progress of production, supply logistics and services. To achieve the goal, we can construct value creation and new business model by integrating organically with production management systems which is existing and cyber-physical systems, Internet of Things, Services Internet and sensor, etc. However, if integration with production management systems does not work effectively by adding and developing new technologies, It does not have performance. Hence, in this research, we will analysis Industry 4.0 which is possible for small quantity batch production and one of the light and flexible manufacturing systems, and based on this, we will suggest methodology to horizontally integrate with production management systems.

An Improved Decoding Scheme of LCPC Codes (LCPC 부호의 개선된 복호 방식)

  • Cheong, Ho-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.430-435
    • /
    • 2018
  • In this paper, an improved decoding scheme for low-complexity parity-check(LCPC) code with small code length is proposed. The LCPC code is less complex than the turbo code or low density parity check(LDPC) code and requires less memory, making it suitable for communication between internet-of-things(IoT) devices. The IoT devices are required to have low complexity due to limited energy and have a low end-to-end delay time. In addition, since the packet length to be transmitted is small and the signal processing capability of the IoT terminal is small, the LCPC coding system should be as simple as possible. The LCPC code can correct all single errors and correct some of the two errors. In this paper, the proposed decoding scheme improves the bit error rate(BER) performance without increasing the complexity by correcting both errors using the soft value of the modulator output stage. As a result of the simulation using the proposed decoding scheme, the code gain of about 1.1 [dB] was obtained at the bit error rate of $10^{-5}$ compared with the existing decoding method.

A Smart Home Prototype Implementation Using Raspberry Pi (라즈베리파이를 이용한 스마트 홈 프로토타입 구현)

  • Kim, Jeong-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.10
    • /
    • pp.1139-1144
    • /
    • 2015
  • The internet of things(: IoT) which could produce new information as well as service through connecting small devices with internet interface becomes reality and could be utilized in home, office and plant. Especially the IoT can provide our home for safety, security, convenience, and power saving since all devices form a small internet. This paper proposes an IoT prototype for home with Raspberry Pi which has various sensors and monitors environment. This Raspberry Pi sensor node is small and inexpensive but can provide powerful service. The implemented node goes beyond simple role of sensor node and features a kind of sensor web node which performs various functions to outer network. So the proposed IoT prototype can provide flexibility as well as extensibility since it does not need expensive server.

On Power Calculation for First and Second Strong Channel Users in M-user NOMA System

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.49-58
    • /
    • 2020
  • Non-orthogonal multiple access (NOMA) has been recognized as a significant technology in the fifth generation (5G) and beyond mobile communication, which encompasses the advanced smart convergence of the artificial intelligence (AI) and the internet of things (IoT). In NOMA, since the channel resources are shared by many users, it is essential to establish the user fairness. Such fairness is achieved by the power allocation among the users, and in turn, the less power is allocated to the stronger channel users. Especially, the first and second strong channel users have to share the extremely small amount of power. In this paper, we consider the power optimization for the two users with the small power. First, the closed-form expression for the power allocation is derived and then the results are validated by the numerical results. Furthermore, with the derived analytical expression, for the various channel environments, the optimal power allocation is investigated and the impact of the channel gain difference on the power allocation is analyzed.

Comparison of Efficiency Analysis of Device Energy Used in Object Communication (사물통신에 사용되는 디바이스 에너지의 효율화 분석 고찰)

  • Hwang, Seong-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1106-1112
    • /
    • 2017
  • As the Internet of Things (IOT) is evolving into an industry-wide service and expanded to the concept of Internet of Everything (IoE), services using IoT devices are easily accessible in everyday life. IoT requires more devices to collect information and is expected to increase the number of devices by 50 billion by 2020, and is about the number of devices currently available. Gradually, the number of mobile devices, smart devices, and Internet devices is increasing, and energy resources are required to operate such a large number of Internet devices, and the energy consumed by each device is small. In this paper, we consider the number of devices to be increased and generate a signal irrespective of transmission information so that power other than the energy required for signal transmission is consumed. When transmission information is generated and near to a receiver to receive information, The method to be used as an analysis is designed through experiments.

Analysis of Deep learning Quantization Technology for Micro-sized IoT devices (초소형 IoT 장치에 구현 가능한 딥러닝 양자화 기술 분석)

  • YoungMin KIM;KyungHyun Han;Seong Oun Hwang
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.9-17
    • /
    • 2023
  • Deep learning with large amount of computations is difficult to implement on micro-sized IoT devices or moblie devices. Recently, lightweight deep learning technologies have been introduced to make sure that deep learning can be implemented even on small devices by reducing the amount of computation of the model. Quantization is one of lightweight techniques that can be efficiently used to reduce the memory and size of the model by expressing parameter values with continuous distribution as discrete values of fixed bits. However, the accuracy of the model is reduced due to discrete value representation in quantization. In this paper, we introduce various quantization techniques to correct the accuracy. We selected APoT and EWGS from existing quantization techniques, and comparatively analyzed the results through experimentations The selected techniques were trained and tested with CIFAR-10 or CIFAR-100 datasets in the ResNet model. We found out problems with them through experimental results analysis and presented directions for future research.

Analyses of Security Issues and Vulnerability for Healthcare System For Under Internet of Things (사물인터넷과 융합한 헬스케어 시스템에서의 보안 이슈 및 취약점 분석)

  • Jung Tae Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.699-706
    • /
    • 2023
  • Recently, the 4 generation industry revolution is developed with advanced and combined with a variety of new technologies. Conventional healthcare system is applied with IoT application. It provides many advantages with mobility and swift data transfers to patient and doctor. In despite of these kinds of advantages, it occurred security issues between basic devices and protocols in their applications. Especially, internet of things have restricted and limited resources such as small memory capacity, low capability of computing power, etc. Therefore, we can not utilize conventional mechanism. In this paper, we analyzed attacks and vulnerability in terms of security issues. To analyze security structure, features, demands and requirements, we solve the methods to be reduced security issues.