• Title/Summary/Keyword: Internet of Things sensor

Search Result 493, Processing Time 0.03 seconds

Security Vulnerability of Internet of Things and Its Solution (사물인터넷 보안 문제제기와 대안)

  • Choi, Heesik;Cho, Yanghyun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.1
    • /
    • pp.69-78
    • /
    • 2015
  • Internet of Things(IoT) is electronic devices and household appliances use wireless sensor network in environment of high speed wireless network and LTE mobile service. The combination of the development of Internet and wireless network led to development of new forms of service such as electronic devices and household appliances can connect to the Internet through various sensors and online servers such as a Home Network. Even though Internet of Things is useful, there are problems in Internet of Things. In environment of Internet of Things, information leakage could happens by illegal eavesdropping and spoofing. Also illegal devices of wireless communication interference can cause interfere in Internet of things service, physical damage and denial of service by modulation of data and sensor. In this thesis, it will analyze security threats and security vulnerability in environment of mobile services and smart household appliances, then it will suggest plan. To solve security issues, it is important that IT and RFID sensor related companies realize importance of security environment rather than focus on making profit. It is important to develop the standardized security model that applies to the Internet of Things by security-related packages, standard certification system and strong encrypted authentication.

Study on Internet of Things Based Low-Power Wireless Sensor Network System for Wild Vegetation Communities Ecological Monitoring (야생식생군락 생태계 모니터링을 위한 사물인터넷 기반의 저전력 무선 센서네트워크 시스템에 관한 연구)

  • Kim, Nae-Soo;Lee, Kyeseon;Ryu, Jaehong
    • Journal of Information Technology Services
    • /
    • v.14 no.1
    • /
    • pp.159-173
    • /
    • 2015
  • This paper presents a study on the Internet of Things based low-power wireless sensor networks for remote monitoring of wildlife ecosystem due to climate change. Especially, it is targeting the wild vegetation communities ecological monitoring. First, we performed a pre-test and analysis for selecting the appropriate frequency for the sensor network to collect and deliver information reliably in harsh propagation environment of the forest area, and selected for sensors for monitoring wild vegetation communities on the basis of considerations for selecting the best sensor. In addition, we have presented the platform concept and hierarchical function structures for effectively monitoring, analyzing and predicting of ecosystem changes, to apply the Internet of Things in the ecological monitoring area. Based on this, this paper presents the system architecture and design of the Internet of Things based low-power wireless sensor networks for monitoring the ecosystem of the wild vegetation communities. Finally, we constructed and operated the test-bed applied to real wild trees, using the developed prototype based on the design.

Design of Improved Authentication Protocol for Sensor Networks in IoT Environment (사물인터넷 환경에서 센서 네트워크에 대한 개선된 인증 프로토콜 설계)

  • Kim, Deuk-Hun;Kwak, Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.2
    • /
    • pp.467-478
    • /
    • 2015
  • Recently interest in Internet of Things(IoT) is increasing, and a variety of the security technologies that are suitable for Internet of Things has being studied. Especially sensor network area of the device is an increased using and diversified for a low specification devices because of characteristic of the Internet of Things. However, there is difficulty in directly applying the security technologies such as the current authentication technologies to a low specification device, so also increased security threats. Therefore, authentication protocol between entities on the sensor network communication in Internet of Things has being studied. In 2014, Porambage et al. suggested elliptic curve cryptography algorithm based on a sensor network authentication protocol for advance security of Internet of Things environment, but it is vulnerability exists. Accordingly, in this paper, we analyze the vulnerability in elliptic curve cryptography algorithm based on authentication protocol proposed by Porambage et al. and propose an improved authentication protocol for sensor networks in Internet of Things environment.

Internet of Things: An Overview and its Applications in Aviation (항공 분야에서의 사물인터넷 기술 현황)

  • Hyun, WooSeok
    • Korean journal of aerospace and environmental medicine
    • /
    • v.30 no.3
    • /
    • pp.100-107
    • /
    • 2020
  • Internet of Things (IoT) is a technology that communicates data between devices, which are things, using an embedded sensor connected through network backbone such as the internet. Here, data communication technology, sensor technology, and actuator (interface) technology are fused into IoT and it turns devices into smart things. As a result, vast sized data are being generated and that data is being processed into useful actions that can control the things that are devices to make our lives much fruitful. Nowadays, the IoT, early defined as Machine-to-Machine (M2M) connection, becomes a key technology powered by growing innovation of wireless communication trends in the internet connectivity through mobile networking. This paper gives an overview of Internet of Things and brief information about major technologies and its applications in various fields focusing aviation.

Development of Internet of Things Sensor-based Information System Robust to Security Attack (보안 공격에 강인한 사물인터넷 센서 기반 정보 시스템 개발)

  • Yun, Junhyeok;Kim, Mihui
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.95-107
    • /
    • 2022
  • With the rapid development of Internet of Things sensor devices and big data processing techniques, Internet of Things sensor-based information systems have been applied in various industries. Depending on the industry in which the information systems are applied, the accuracy of the information derived can affect the industry's efficiency and safety. Therefore, security techniques that protect sensing data from security attacks and enable information systems to derive accurate information are essential. In this paper, we examine security threats targeting each processing step of an Internet of Things sensor-based information system and propose security mechanisms for each security threat. Furthermore, we present an Internet of Things sensor-based information system structure that is robust to security attacks by integrating the proposed security mechanisms. In the proposed system, by applying lightweight security techniques such as a lightweight encryption algorithm and obfuscation-based data validation, security can be secured with minimal processing delay even in low-power and low-performance IoT sensor devices. Finally, we demonstrate the feasibility of the proposed system by implementing and performance evaluating each security mechanism.

An Energy Efficient Intelligent Method for Sensor Node Selection to Improve the Data Reliability in Internet of Things Networks

  • Remesh Babu, KR;Preetha, KG;Saritha, S;Rinil, KR
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3151-3168
    • /
    • 2021
  • Internet of Things (IoT) connects several objects with embedded sensors and they are capable of exchanging information between devices to create a smart environment. IoT smart devices have limited resources, such as batteries, computing power, and bandwidth, but comprehensive sensing causes severe energy restrictions, lowering data quality. The main objective of the proposal is to build a hybrid protocol which provides high data quality and reduced energy consumption in IoT sensor network. The hybrid protocol gives a flexible and complete solution for sensor selection problem. It selects a subset of active sensor nodes in the network which will increase the data quality and optimize the energy consumption. Since the unused sensor nodes switch off during the sensing phase, the energy consumption is greatly reduced. The hybrid protocol uses Dijkstra's algorithm for determining the shortest path for sensing data and Ant colony inspired variable path selection algorithm for selecting active nodes in the network. The missing data due to inactive sensor nodes is reconstructed using enhanced belief propagation algorithm. The proposed hybrid method is evaluated using real sensor data and the demonstrated results show significant improvement in energy consumption, data utility and data reconstruction rate compared to other existing methods.

Design of Internet of Underwater Things Architecture and Protocol Stacks

  • Muppalla, Kalyani;Yun, Nam-Yeol;Park, Soo-Hyun;Kim, Changhwa
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.486-488
    • /
    • 2013
  • In the earth more than half of the space filled with water. In that water most of the part is in the form of oceans. The ocean atmosphere determines climate on the land. Combining the Underwater Acoustic Sensor Network (UWASN) system with Internet Of Things (IoT) is called Internet of Underwater Things (IoUT). Using IoUT we can find the changes in the ocean environment. Underwater sensor nodes are used in UWASN. Underwater sensor nodes are constructive in offshore investigation, disaster anticipation, data gathering, assisted navigation, pollution checking and strategic inspection. By using IoT components such as Database, Server and Internet, ocean data can be broadcasted. This paper introduces IoUT architecture and and explains fish forming application scenario with this IoUT architecture.

The research on Diffie-Hellman-based IoT Sensor Node key management (Diffie-Hellman 기반 사물인터넷 센서노드 키 관리 연구)

  • Hong, Sunghyuck;Yu, Jina
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.9-14
    • /
    • 2017
  • Recently, the Internet of Things are developing in accordance with the technology of implementation in low-cost, small-size, low power consumption and smart sensor that can communicate using the internet. Especially, key management researches for secure information transmission based on the Internet of Things (IoT) are actively performing. But, Internet of Things(IoT) are uses sensor. Therefore low-power consumption and small-memory are restrictive condition. As a result, managing the key is difficult as a general security measure. However, The problem of secure key management is an essential challenge For the continuous development of the Internet of things. In this paper, we propose a key distribution and management technique in secure Internet of things. In the key generation and management stage, it satisfies the conditions and without physically constrained for IoT based communication.

Fall Detection System based Internet of Things (사물인터넷 기반의 낙상 감지 시스템)

  • Jeong, Pil-Seong;Cho, Yang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2546-2553
    • /
    • 2015
  • Falling can happen to anyone, anywhere at anytime and especially it is one of the risk factor that can lead causes of death of persons aged 65 and over. Recently, the study of fall detection mechanisms as a smart healthcare service based on the IoT(Internet of Things) are being actively investigated. In this paper, we implement a fall detection system using arduino as a smart sensor communicates with a smart device. When transmitting the information of the acceleration on a sensor smart sensor with a BLE(Bluetooth Low Energy), the smart device processing and analyzing this information. and determines a fall situation. A fall detection system based on the Internet of Things which using smart sensor and smart device, has the advantage of being able to overcome the mobility and portability constraints.

Intelligent Shoes for Detecting Blind Falls Using the Internet of Things

  • Ahmad Abusukhon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2377-2398
    • /
    • 2023
  • In our daily lives, we engage in a variety of tasks that rely on our senses, such as seeing. Blindness is the absence of the sense of vision. According to the World Health Organization, 2.2 billion people worldwide suffer from various forms of vision impairment. Unfortunately, blind people face a variety of indoor and outdoor challenges on a daily basis, limiting their mobility and preventing them from engaging in other activities. Blind people are very vulnerable to a variety of hazards, including falls. Various barriers, such as stairs, can cause a fall. The Internet of Things (IoT) is used to track falls and send a warning message to the blind caretakers. One of the gaps in the previous works is that they were unable to differentiate between falls true and false. Treating false falls as true falls results in many false alarms being sent to the blind caretakers and thus, they may reject the IoT system. As a means of bridging this chasm, this paper proposes an intelligent shoe that is able to precisely distinguish between false and true falls based on three sensors, namely, the load scale sensor, the light sensor, and the Flex sensor. The proposed IoT system is tested in an indoor environment for various scenarios of falls using four models of machine learning. The results from our system showed an accuracy of 0.96%. Compared to the state-of-the-art, our system is simpler and more accurate since it avoids sending false alarms to the blind caretakers.