• Title/Summary/Keyword: Internet of Medical Things

Search Result 136, Processing Time 0.029 seconds

Smart-Coord: Enhancing Healthcare IoT-based Security by Blockchain Coordinate Systems

  • Talal Saad Albalawi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.32-42
    • /
    • 2024
  • The Internet of Things (IoT) is set to transform patient care by enhancing data collection, analysis, and management through medical sensors and wearable devices. However, the convergence of IoT device vulnerabilities and the sensitivity of healthcare data raises significant data integrity and privacy concerns. In response, this research introduces the Smart-Coord system, a practical and affordable solution for securing healthcare IoT. Smart-Coord leverages blockchain technology and coordinate-based access management to fortify healthcare IoT. It employs IPFS for immutable data storage and intelligent Solidity Ethereum contracts for data integrity and confidentiality, creating a hierarchical, AES-CBC-secured data transmission protocol from IoT devices to blockchain repositories. Our technique uses a unique coordinate system to embed confidentiality and integrity regulations into a single access control model, dictating data access and transfer based on subject-object pairings in a coordinate plane. This dual enforcement technique governs and secures the flow of healthcare IoT information. With its implementation on the Matic network, the Smart-Coord system's computational efficiency and cost-effectiveness are unparalleled. Smart-Coord boasts significantly lower transaction costs and data operation processing times than other blockchain networks, making it a practical and affordable solution. Smart-Coord holds the promise of enhancing IoT-based healthcare system security by managing sensitive health data in a scalable, efficient, and secure manner. The Smart-Coord framework heralds a new era in healthcare IoT adoption, expertly managing data integrity, confidentiality, and accessibility to ensure a secure, reliable digital environment for patient data management.

A Broadband High Gain Planar Vivaldi Antenna for Medical Internet of Things (M-IoT) Healthcare Applications

  • Permanand, Soothar;Hao, Wang;Zaheer Ahmed, Dayo;Falak, Naz;Badar, Muneer;Muhammad, Aamir
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.245-251
    • /
    • 2022
  • In this paper, a high gain, broadband planar vivaldi antenna (PVA) by utilizing a broadband stripline feed is developed for wireless communication for IoT systems. The suggested antenna is designed by attaching a tapered-slot construction to a typical vivaldi antenna, which improves the antenna's radiation properties. The PVA is constructed on a low-cost FR4 substrate. The dimensions of the patch are 1.886λ0×1.42λ0×0.026λ0, dielectric constant Ɛr=4.4, and loss tangent δ=0.02. The width of the feed line is reduced to improve the impedance bandwidth of the antenna. The computed reflection coefficient findings show that the suggested antenna has a 46.2% wider relative bandwidth calculated at a 10 dB return loss. At the resonance frequencies of 6.5 GHz, the studied results show an optimal gain of 5.82 dBi and 85% optimal radiation efficiency at the operable band. The optometric analysis of the proposed structure shows that the proposed antenna can achieve wide enough bandwidth at the desired frequency and hence make the designed antenna appropriate to work in satellite communication and medical internet of things (M-IoT) healthcare applications.

Implementation of Cough Detection System Using IoT Sensor in Respirator

  • Shin, Woochang
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.132-138
    • /
    • 2020
  • Worldwide, the number of corona virus disease 2019 (COVID-19) confirmed cases is rapidly increasing. Although vaccines and treatments for COVID-19 are being developed, the disease is unlikely to disappear completely. By attaching a smart sensor to the respirator worn by medical staff, Internet of Things (IoT) technology and artificial intelligence (AI) technology can be used to automatically detect the medical staff's infection symptoms. In the case of medical staff showing symptoms of the disease, appropriate medical treatment can be provided to protect the staff from the greater risk. In this study, we design and develop a system that detects cough, a typical symptom of respiratory infectious diseases, by applying IoT technology and artificial technology to respiratory protection. Because the cough sound is distorted within the respirator, it is difficult to guarantee accuracy in the AI model learned from the general cough sound. Therefore, coughing and non-coughing sounds were recorded using a sensor attached to a respirator, and AI models were trained and performance evaluated with this data. Mel-spectrogram conversion method was used to efficiently classify sound data, and the developed cough recognition system had a sensitivity of 95.12% and a specificity of 100%, and an overall accuracy of 97.94%.

Artificial neural fuzzy system and monitoring the process via IoT for optimization synthesis of nano-size polymeric chains

  • Hou, Shihao;Qiao, Luyu;Xing, Lumin
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.375-386
    • /
    • 2022
  • Synthesis of acrylate-based dispersion resins involves many parameters including temperature, ingredients concentrations, and rate of adding ingredients. Proper controlling of these parameters results in a uniform nano-size chain of polymer on one side and elimination of hazardous residual monomer on the other side. In this study, we aim to screen the process parameters via Internet of Things (IoT) to ensure that, first, the nano-size polymeric chains are in an acceptable range to acquire high adhesion property and second, the remaining hazardous substance concentration is under the minimum value for safety of public and personnel health. In this regard, a set of experiments is conducted to observe the influences of the process parameters on the size and dispersity of polymer chain and residual monomer concentration. The obtained dataset is further used to train an Adaptive Neural network Fuzzy Inference System (ANFIS) to achieve a model that predicts these two output parameters based on the input parameters. Finally, the ANFIS will return values to the automation system for further decisions on parameter adjustment or halting the process to preserve the health of the personnel and final product consumers as well.

Laboratory Environment Monitoring: Implementation Experience and Field Study in a Tertiary General Hospital

  • Kang, Seungjin;Baek, Hyunyoung;Jun, Sunhee;Choi, Soonhee;Hwang, Hee;Yoo, Sooyoung
    • Healthcare Informatics Research
    • /
    • v.24 no.4
    • /
    • pp.371-375
    • /
    • 2018
  • Objectives: To successfully introduce an Internet of Things (IoT) system in the hospital environment, this study aimed to identify issues that should be considered while implementing an IoT based on a user demand survey and practical experiences in implementing IoT environment monitoring systems. Methods: In a field test, two types of IoT monitoring systems (on-premises and cloud) were used in Department of Laboratory Medicine and tested for approximately 10 months from June 16, 2016 to April 30, 2017. Information was collected regarding the issues that arose during the implementation process. Results: A total of five issues were identified: sensing and measuring, transmission method, power supply, sensor module shape, and accessibility. Conclusions: It is expected that, with sufficient consideration of the various issues derived from this study, IoT monitoring systems can be applied to other areas, such as device interconnection, remote patient monitoring, and equipment/environmental monitoring.

Sewing-enabled electric button for smart fabric

  • Lee, Kang-Ho;Lee, Dongkyu;Lee, Yong-Goo;Kwon, Ohwon
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.67-70
    • /
    • 2021
  • A new button-shaped electrical device was developed for a smart fabric. This electric button can be sewn anywhere on the garment, similar to a traditional button fastener. t not only performs a decorative function but also makes the fabric suitable for use in Internet of Things (IoT) applications. It has metallic through-holes such that it can be fastened onto a fabric by conductive sewing threads. When threaded through metallic holes, the button can communicate with the external device by transmitting and receiving data. In addition, it adds specific functions by stacking a detachable application layer on the base layer. It is robust to frequent washing, and thus has excellent repeatability for use as an IoT device. The feasibility of the electric button was successfully demonstrated by its ability to identify the physical activities of walking and running, monitoring ambient temperature, and turning on LED lights.

Breath Gas Sensors for Diabetes and Lung Cancer Diagnosis

  • Byeongju Lee;Jin-Oh Lee;Junyeong Lee;Inkyu Park;Dae-Sik Lee
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Recently, the digital healthcare technologies including non-invasive diagnostics based on Internet of Things (IOT) are getting attention. Human exhaled breath contains a variety of volatile organic compounds (VOCs), which can provide information of malfunctions of the body and presence of a specific disease. Detection of VOCs in exhaled breath using gas sensors are easy to use, safe, and cost-effective. However, accurate diagnosis of diseases is challenging because changes in concentration of VOCs are extremely small and lots of body factors directly or indirectly influence to the conditions. To overcome the limitations, highly selective nanosensors and artificial intelligent electronic nose (E-nose) systems have been mainly researched in recent decades. This review provides brief reviews of the recent studies for diabetes and lung cancer diagnosis using nanosensors and E-nose systems.

Mutual Authentication Method for Hash Chain Based Sensors in IoT Environment (IoT 환경에서 해시 체인 기반 센서 상호 인증 기법)

  • Lee, Kwang-Hyoung;Lee, Jae-Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.303-309
    • /
    • 2018
  • Internet of Things technology is an intelligent service that connects all objects to the Internet and interacts with them. It is a technology that can be used in various fields, such as device management, process management, monitoring of restricted areas for industrial systems, as well as for navigation in military theaters of operation. However, because all devices are connected to the Internet, various attacks using security vulnerabilities can cause a variety of damage, such as economic loss, personal information leaks, and risks to life from vulnerability attacks against medical services or for military purposes. Therefore, in this paper, a mutual authentication method and a key-generation and update system are applied by applying S/Key technology based on a hash chain in the communications process. A mutual authentication method is studied, which can cope with various security threats. The proposed protocol can be applied to inter-peer security communications, and we confirm it is robust against replay attacks and man-in-the-middle attacks, providing data integrity against well-known attacks in the IoT environment.

Medical Information Security and Standard Technology On IoT Environment (IoT 환경의 의료 정보보호와 표준 기술)

  • Woo, Sung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2683-2688
    • /
    • 2015
  • Internet of Things(IoT) using a variety of technologies in combination provides a convenient, elevated range of services to users. IoT has been noted in combining the fields of medical service in particular. However, with the advent and growing of IoT, the more medical services are evolving, security problems caused by leakage of personal health information will become more serious. U-Health and medical devices, which deal mainly the personal health information, is required to a high level of privacy and security of health information. Therefore, the introduction of the IoT in the healthcare industry requires the medical information security as a prerequisite. This study analyzes security status and trend of IoT, personal medical information leakage cases, the health information protection measures in accordance with the life cycle of medical information, and the standardized protection technologies.

Editorial for Vol. 30, Issue 3 (편집자 주 - 30권 3호)

  • Kim, Young Hyo
    • Korean journal of aerospace and environmental medicine
    • /
    • v.30 no.3
    • /
    • pp.83-85
    • /
    • 2020
  • In commemoration of Vol. 30, Issue 3, our journal prepared five review articles and one original paper. The global outbreak of COVID-19 in 2020 has impacted our society, and especially the aviation and travel industries have been severely damaged. Kwon presented the aviation medical examination regulations related to COVID-19 announced by the Ministry of Land, Infrastructure, and Transport of the Republic of Korea. Lim summarized various efforts of airlines to overcome the crisis in the aviation industry. He also discussed the management of these aircraft as the number of airplanes landing for long periods increased. Finally, he suggested various quarantine guidelines at airports and onboard aircraft. COVID-19 has had a profound impact on mental health as well as physical effects. Kim investigated the impact of COVID-19 on mental health and suggested ways to manage the stress caused by it. The Internet of Things (IoT) refers to a technology in which devices communicate with each other through wired or wireless communication. Hyun explained the current state of the technology of the IoT and how it could be used, especially in the aviation field. In the area of airline service, various situations arise between passengers and crew. Therefore, role-playing is useful in performing education to prepare and respond to passengers' different needs appropriately. Ra introduced the conceptual background and general concepts of role-playing and presented the actual role-play's preparation process, implementation, evaluation, and feedback process. For a fighter to fly for a long time and perform a rapid air attack, air refueling is essential, which serves refueling from the air rather than from the aircraft base. Koo developed a questionnaire based on the HFACS (Human Factors Analysis and Classification System) model and used it to conduct a fighter pilot survey and analyze the results.