• Title/Summary/Keyword: Internet of Energy

Search Result 1,245, Processing Time 0.026 seconds

New Energy Efficient Clear Channel Assessment for Wireless Network

  • Shin, Soo-Young;Ramachandran, Iyappan;Roy, Sumit
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.8
    • /
    • pp.1404-1422
    • /
    • 2011
  • In this paper, a new clear channel assessment (CCA) method: cascaded-CCA, is proposed. The primary motivation for the proposed approach is to integrate the respective advantages of two standard CCA mechanisms, energy detect and preamble detect, to arrive at a new dual threshold CCA family that can provide greater flexibility towards tuning MAC performance. Cascaded-CCA integrates energy efficiency of the energy detector (ED) and the reliability of the preamble detector (PD). The probability of detection/false alarm and power consumption of cascaded-CCA in the CCA modules of IEEE 802.11b are analyzed and compared with ED and PD as an example. The performance of cascaded-CCA is explored via MATLAB simulations that implement the CCA modules and medium access control (MAC) protocol for IEEE 802.11 and IEEE 802.15.4. Simulation results showed that cascaded-CCA improves the energy efficiency significantly compared to ED-only or PD-only CCA. In addition, ED, PD, and cascaded CCA are applied to a cognitive network scenario to validate the effectiveness of the proposed cascaded-CCA.

A Cluster Formation Scheme with Remaining Energy Level of Sensor Nodes in Wireless Sensor Networks (무선 센서 네트워크에서 잔여 에너지 레벨을 이용한 클러스터 형성 기법)

  • Jang, Kyung-Soo;Kangm, Jeong-Jin;Kouh, Hoon-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.6
    • /
    • pp.49-54
    • /
    • 2009
  • Sensor nodes in wireless sensor networks operate in distributed environments with limited resources and sensing capabilities. Especially, a sensor node has a small energy. After the sensor nodes are distributed in some area, it is not accessible to the area. AIso, a battery of sensor node cannot change. One of the hot issues in wireless sensor networks maximizes the network lifetime through minimizing the energy dissipation of sensor nodes. In LEACH, the cluster head is elected based on a kind of probability method without considering remaining energy of sensor node. In this paper, we propose a cluster formation scheme that the network elect the node, which has higher energy level than average energy level of overall sensor network, as cluster head node. We show the superiority of our scheme through computer simulation.

  • PDF

Defecfion of Face Feafures using Extended Valley Energy (확장된 계곡에너지를 이용한 얼굴특징점 검출)

  • Park, In-Kyu;Ahn, Bo-Huck;Choi, Gyoo-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.187-192
    • /
    • 2009
  • In this paper the extended algorithm of valley energy was proposed In order to detect the robust features of the face The proposed energy had the variable type without the constant size of valley mask for measuring the gray value among pixels By accumulating the results generated by the various masks the information of valley energy was so diversified. Then the robust energy which is independent of the environments was maded. The various experiments proved that The proposed method showed the detection rate of 98 percentage in the features of the face region.

  • PDF

Signal Transmission Scheme for Power Line Communications for Internet of Energy (에너지 인터넷을 위한 전력선 통신의 신호전송 기법)

  • Hwang, Yu Min;Sun, Young Ghyu;Kim, Soo Hwan;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.146-151
    • /
    • 2017
  • This paper proposes a transmission algorithm that optimizes transmission power and sub-channel allocation to maximize energy efficiency considering characteristics of the channel impedance of power lines in power line communication systems. Since the received power at the receiver is influenced by the characteristics of the power line channel, it is necessary to consider channel characteristics when developing a transmission strategy in a power line communication systems. In addition, the energy efficiency should be optimized while meeting the practical constraints, such as the maximum transmission power limit of the transmitter and minimum quality of service for each user. In the computer simulation, we confirm that the energy efficiency of the proposed algorithm is improved compared to baseline schemes.

A cluster head replacement based on threshold in the Internet of Things (사물인터넷에서 임계치 기반의 클러스터 헤드 교체 기법)

  • Kim, Jeong-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.11
    • /
    • pp.1241-1248
    • /
    • 2014
  • An efficient battery usage of sensor nodes is main goal in a sensor network, which is the substructure of Internet of Things. Maximizing the battery usage of sensor nodes makes the lifetime of sensor network increase as well as the reliability of the network improved. The previous solutions to solve these problems are mainly focused on the cluster head selection based on the remaining energy. In this paper, we consider both the head selection and the replacement interval which is determined by a threshold that is based on the remaining energy, density of alive nodes, and location. Our simulation results show that the proposed scheme has outstanding contribution in terms of maximizing the life time of the network and balancing energy consumption of all nodes.

Development of energy expenditure measurement device based on voice and body activity (음성과 활동량을 이용한 에너지 소모량 측정기기 개발)

  • Im, Jae Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.303-309
    • /
    • 2012
  • Energy expenditure values were estimated based on the voice signals and body activities. Voice signals and body activities were obtained using PVDF contact vibration sensor and 3-axis accelerometer, respectively. Vibration caused by voices, activity signals, and actual energy consumption were acquired using data acquisition system and gas analyzer. With the use of power values from the voice signals and weight as independent variables, R-square of 0.918 appeared to show the highest value. For activity outputs, use of signal vector magnitude, body mass index, height, and age as independent variables revealed to provide the highest correlation with actual energy expenditure. Estimation of energy expenditure based on voice and activity provides more accurate results than based on activity only.

A Practical Unacknowledged Unicast Transmission in IEEE 802.11 Networks

  • Yang, Hyun;Yun, Jin-Seok;Oh, Jun-Seok;Park, Chang-Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.3
    • /
    • pp.523-541
    • /
    • 2011
  • In current IEEE 802.11 wireless LAN, every unicast transmission requires an ACK from the receiver for reliability, though it consumes energy and bandwidth. There have been studies to remove or reduce ACK overhead, especially for energy efficiency. However none of them are practically used now. This paper introduces a noble method of selective unacknowledged transmission, where skipping an ACK is dynamically decided frame by frame. Utilizing the fact that a multicast frame is transmitted without accompanying an ACK in 802.11, the basic unacknowledged transmission is achieved simply by transforming the destination address of a frame to a multicast address. Since removing ACK is inherently more efficient but less strict, its practical profit is dependent on traffic characteristics of a frame as well as network error conditions. To figure out the selective conditions, energy and performance implications of unacknowledged transmission have been explored. Extensive experiments show that energy consumption is almost always reduced, but performance may be dropped especially when TCP exchanges long data with a long distance node through a poor wireless link. An experiment with a well-known traffic model shows that selective unacknowledged transmission gives energy saving with comparable performance.

Optimizing Energy-Latency Tradeoff for Computation Offloading in SDIN-Enabled MEC-based IIoT

  • Zhang, Xinchang;Xia, Changsen;Ma, Tinghuai;Zhang, Lejun;Jin, Zilong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.4081-4098
    • /
    • 2022
  • With the aim of tackling the contradiction between computation intensive industrial applications and resource-weak Edge Devices (EDs) in Industrial Internet of Things (IIoT), a novel computation task offloading scheme in SDIN-enabled MEC based IIoT is proposed in this paper. With the aim of reducing the task accomplished latency and energy consumption of EDs, a joint optimization method is proposed for optimizing the local CPU-cycle frequency, offloading decision, and wireless and computation resources allocation jointly. Based on the optimization, the task offloading problem is formulated into a Mixed Integer Nonlinear Programming (MINLP) problem which is a large-scale NP-hard problem. In order to solve this problem in an accessible time complexity, a sub-optimal algorithm GPCOA, which is based on hybrid evolutionary computation, is proposed. Outcomes of emulation revel that the proposed method outperforms other baseline methods, and the optimization result shows that the latency-related weight is efficient for reducing the task execution delay and improving the energy efficiency.

Energy-Efficient Algorithm for Assigning Verification Tasks in Cloud Storage

  • Xu, Guangwei;Sun, Zhifeng;Yan, Cairong;Shi, Xiujin;Li, Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.1-17
    • /
    • 2017
  • Mobile Cloud Computing has become a promising computing platform. It moves users' data to the centralized large data centers for users' mobile devices to conveniently access. Since the data storage service may not be fully trusted, many public verification algorithms are proposed to check the data integrity. However, these algorithms hardly consider the huge computational burden for the verifiers with resource-constrained mobile devices to execute the verification tasks. We propose an energy-efficient algorithm for assigning verification tasks (EEAVT) to optimize the energy consumption and assign the verification tasks by elastic and customizable ways. The algorithm prioritizes verification tasks according to the expected finish time of the verification, and assigns the number of checked blocks referring to devices' residual energy and available operation time. Theoretical analysis and experiment evaluation show that our algorithm not only shortens the verification finish time, but also decreases energy consumption, thus improving the efficiency and reliability of the verification.

Adaptive Duty Cycling MAC Protocols Using Closed-Loop Control for Wireless Sensor Networks

  • Kim, Jae-Hyun;Kim, Seog-Gyu;Lee, Jai-Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.105-122
    • /
    • 2011
  • The fundamental design goal of wireless sensor MAC protocols is to minimize unnecessary power consumption of the sensor nodes, because of its stringent resource constraints and ultra-power limitation. In existing MAC protocols in wireless sensor networks (WSNs), duty cycling, in which each node periodically cycles between the active and sleep states, has been introduced to reduce unnecessary energy consumption. Existing MAC schemes, however, use a fixed duty cycling regardless of multi-hop communication and traffic fluctuations. On the other hand, there is a tradeoff between energy efficiency and delay caused by duty cycling mechanism in multi-hop communication and existing MAC approaches only tend to improve energy efficiency with sacrificing data delivery delay. In this paper, we propose two different MAC schemes (ADS-MAC and ELA-MAC) using closed-loop control in order to achieve both energy savings and minimal delay in wireless sensor networks. The two proposed MAC schemes, which are synchronous and asynchronous approaches, respectively, utilize an adaptive timer and a successive preload frame with closed-loop control for adaptive duty cycling. As a result, the analysis and the simulation results show that our schemes outperform existing schemes in terms of energy efficiency and delivery delay.