• Title/Summary/Keyword: Internet of Energy

Search Result 1,245, Processing Time 0.03 seconds

Internet of Things based Smart Energy Management for Smart Home

  • TASTAN, Mehmet
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2781-2798
    • /
    • 2019
  • Thanks to internet, as one of indispensable parts of our lives, many devices that we use in our daily lives like TV, air conditioner, refrigerator, washing machine, can be monitored and controlled remotely by becoming more intelligent via Internet of Things (IoT) technology. Smart Home applications as one of the elements of smart cities, are individually the most demanded application without question. In this study, Smart Energy Management (SEM) system, based on NodeMCU and Android, has been designed for SEM, which is a part of the smart home application. With this system, household energy consumption can be monitored in real time, as well as having the ability to record the data comprising of operation times and energy consumption information for each device. Additionally, it is ensured to meet the energy needs on a maximized level possible, during the hours when the energy costs are lower owing to the SEM system. The Android interface provides the users with the opportunity to monitor and change their electricity consumption habits in order to optimize the energy efficiency, along with the opportunity to draw up of a daily and weekly schedule.

Case Study on Nest's "Internet of Energy (IoE)" Business Model: Based on Strategic Choices for Connected Product

  • Song, Minzheong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.89-96
    • /
    • 2019
  • The purpose of this study is to investigate Nest Labs (Nest)'s business strategy. The activities based on strategic choices for monetizing connected product are investigated. Nest's capacity and functionality is to offer a seamless integration of devices, platforms, and services and the "Works with Nest" offers an ecosystem fulfilling the needs of different partners. For monetizing customer data, Nest provides a seamless customer experience supported by product incentives. Nest introduces open APIs to connect its connected products to the wider Internet of things (IoT) and open to "If This, Then That." The Nest app controls them from one single place. Nest partners with 32 energy providers as of 2017 and they provide energy from renewable and non-renewable energy sources. Nest also creates a sales channels in direct and indirect route and expands is business model to other industries such as home-rental service, 'AirBnB' to help consumers become more energy-efficient at home.

Instance segmentation with pyramid integrated context for aerial objects

  • Juan Wang;Liquan Guo;Minghu Wu;Guanhai Chen;Zishan Liu;Yonggang Ye;Zetao Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.701-720
    • /
    • 2023
  • Aerial objects are more challenging to segment than normal objects, which are usually smaller and have less textural detail. In the process of segmentation, target objects are easily omitted and misdetected, which is problematic. To alleviate these issues, we propose local aggregation feature pyramid networks (LAFPNs) and pyramid integrated context modules (PICMs) for aerial object segmentation. First, using an LAFPN, while strengthening the deep features, the extent to which low-level features interfere with high-level features is reduced, and numerous dense and small aerial targets are prevented from being mistakenly detected as a whole. Second, the PICM uses global information to guide local features, which enhances the network's comprehensive understanding of an entire image and reduces the missed detection of small aerial objects due to insufficient texture information. We evaluate our network with the MS COCO dataset using three categories: airplanes, birds, and kites. Compared with Mask R-CNN, our network achieves performance improvements of 1.7%, 4.9%, and 7.7% in terms of the AP metrics for the three categories. Without pretraining or any postprocessing, the segmentation performance of our network for aerial objects is superior to that of several recent methods based on classic algorithms.

Global Optimization for Energy Efficient Resource Management by Game Based Distributed Learning in Internet of Things

  • Ju, ChunHua;Shao, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3771-3788
    • /
    • 2015
  • This paper studies the distributed energy efficient resource management in the Internet of Things (IoT). Wireless communication networks support the IoT without limitation of distance and location, which significantly impels its development. We study the communication channel and energy management in the wireless communication network supported IoT to improve the ability of connection, communication, share and collaboration, by using the game theory and distributed learning algorithm. First, we formulate an energy efficient neighbor collaborative game model and prove that the proposed game is an exact potential game. Second, we design a distributed energy efficient channel selection learning algorithm to obtain the global optimum in a distributed manner. We prove that the proposed algorithm will asymptotically converge to the global optimum with geometric speed. Finally, we make the simulations to verify the theoretic analysis and the performance of proposed algorithm.

An Energy Efficient Intelligent Method for Sensor Node Selection to Improve the Data Reliability in Internet of Things Networks

  • Remesh Babu, KR;Preetha, KG;Saritha, S;Rinil, KR
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3151-3168
    • /
    • 2021
  • Internet of Things (IoT) connects several objects with embedded sensors and they are capable of exchanging information between devices to create a smart environment. IoT smart devices have limited resources, such as batteries, computing power, and bandwidth, but comprehensive sensing causes severe energy restrictions, lowering data quality. The main objective of the proposal is to build a hybrid protocol which provides high data quality and reduced energy consumption in IoT sensor network. The hybrid protocol gives a flexible and complete solution for sensor selection problem. It selects a subset of active sensor nodes in the network which will increase the data quality and optimize the energy consumption. Since the unused sensor nodes switch off during the sensing phase, the energy consumption is greatly reduced. The hybrid protocol uses Dijkstra's algorithm for determining the shortest path for sensing data and Ant colony inspired variable path selection algorithm for selecting active nodes in the network. The missing data due to inactive sensor nodes is reconstructed using enhanced belief propagation algorithm. The proposed hybrid method is evaluated using real sensor data and the demonstrated results show significant improvement in energy consumption, data utility and data reconstruction rate compared to other existing methods.

Economic and Non-economic Determinants of Environmental Sustainability in the Long Run: Evidence from G20 Economies

  • Yin, Zihui;Choi, Chang Hwan;Ko, Jung O
    • Journal of Korea Trade
    • /
    • v.26 no.1
    • /
    • pp.1-19
    • /
    • 2022
  • Purpose - This paper analyzes the economic and non-economic factors that contribute to environmental sustainability by reducing CO2 emissions, based on G20 panel data. Design/methodology - We conduct a comparative analysis of advanced and developing economies during 1995-2016. To examine the impact, an environmental Kuznets curve (EKC) model was employed, incorporating additional explanatory variables such as internet use, renewable energy, and services trade. Findings - The empirical findings show the existence of an inverted U-shaped EKC phenomenon between GDP per capita and CO2 emissions in G20 economies, with the turning point at a per capita GDP level of US$ 38,340. Moreover, an inverted U-shape relation exists between internet use and CO2 emissions, with the turning point at a 44% internet use rate. The comparative analysis show that the inverted U-shape curve only exits in advanced economies, with turning points of US$ 42,356 per capita GDP and 27% internet use rate, respectively. Renewable energy and services trade have a greater negative impact on CO2 emissions in advanced economies than in developing economies. Originality/value - Renewable energy and services trade have a greater negative impact on CO2 emissions in advanced economies than in developing economies. Overall, the results suggest the role of internet use, renewable energy and services trade in sustainable development in G20 countries.

A study of energy consumption and savings potential in wired network equipment (유선 네트워크 장비의 에너지 소모량과 절약 잠재성 연구)

  • Kim, Ki-Young;Suh, Yu-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6469-6477
    • /
    • 2013
  • As the Internet has grown, energy consumption and GHG emission from internet use have become issues in recent years. On the other hand, such interest in greening the Internet has focused on edge devices, and there is a lack of deeper related studies of the energy wasted by excessive network-connectivity and the savings potential in wired network equipment. This study presents the background and reasonability of studies on the energy efficiency of wired networks in terms of the environment, economy and energy resources. The energy consumption and savings potential of network equipment were also estimated and the major factors of energy consumption was analyzed based on the data, and future studies for the Internet are presented.

E2GSM: Energy Effective Gear-Shifting Mechanism in Cloud Storage System

  • You, Xindong;Han, GuangJie;Zhu, Chuan;Dong, Chi;Shen, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4681-4702
    • /
    • 2016
  • Recently, Massive energy consumption in Cloud Storage System has attracted great attention both in industry and research community. However, most of the solutions utilize single method to reduce the energy consumption only in one aspect. This paper proposed an energy effective gear-shifting mechanism (E2GSM) in Cloud Storage System to save energy consumption from multi-aspects. E2GSM is established on data classification mechanism and data replication management strategy. Data is classified according to its properties and then be placed into the corresponding zones through the data classification mechanism. Data replication management strategies determine the minimum replica number through a mathematical model and make decision on replica placement. Based on the above data classification mechanism and replica management strategies, the energy effective gear-shifting mechanism (E2GSM) can automatically gear-shifting among the nodes. Mathematical analytical model certificates our proposed E2GSM is energy effective. Simulation experiments based on Gridsim show that the proposed gear-shifting mechanism is cost effective. Compared to the other energy-saved mechanism, our E2GSM can save energy consumption substantially at the slight expense of performance loss while meeting the QoS of user.

A Bibliometric Comparative Analysis on the Applications of AI, IoT, and Big Data to Energy Efficiency

  • Yong Sauk Hau
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.287-296
    • /
    • 2024
  • Artificial intelligence (AI), the Internet of Things (IoT), and Big Data are playing important roles in improving or upgrading energy efficiency. Furthermore, their roles in energy efficiency are expected to become more and more essential. This study conducted a bibliometric comparative analysis on the features in the articles on the AI, the IoT, and the Big Data in energy efficiency by using the Web of Science database and compared the features in their trends in article publications, citations, countries, research areas, journals, and funding agencies from 2012 to 2022. This study attempted to make significant contributions by shedding new light on the following features. Among the AI, the IoT, and the Big Data in energy efficiency, the most articles were published and the most article citations were received in the AI in energy efficiency. China was found out to be the most leading country. Engineering and computer science were revealed to be the first research area. IEEE Access and IEEE Internet of Things were ranked with first journal. National Natural Science Foundation of China was the first research funding agency concerning the articles published in the AI, the IoT, and the Big Data in energy efficiency from 2012 to 2022.

Lightweight multiple scale-patch dehazing network for real-world hazy image

  • Wang, Juan;Ding, Chang;Wu, Minghu;Liu, Yuanyuan;Chen, Guanhai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4420-4438
    • /
    • 2021
  • Image dehazing is an ill-posed problem which is far from being solved. Traditional image dehazing methods often yield mediocre effects and possess substandard processing speed, while modern deep learning methods perform best only in certain datasets. The haze removal effect when processed by said methods is unsatisfactory, meaning the generalization performance fails to meet the requirements. Concurrently, due to the limited processing speed, most dehazing algorithms cannot be employed in the industry. To alleviate said problems, a lightweight fast dehazing network based on a multiple scale-patch framework (MSP) is proposed in the present paper. Firstly, the multi-scale structure is employed as the backbone network and the multi-patch structure as the supplementary network. Dehazing through a single network causes problems, such as loss of object details and color in some image areas, the multi-patch structure was employed for MSP as an information supplement. In the algorithm image processing module, the image is segmented up and down for processed separately. Secondly, MSP generates a clear dehazing effect and significant robustness when targeting real-world homogeneous and nonhomogeneous hazy maps and different datasets. Compared with existing dehazing methods, MSP demonstrated a fast inference speed and the feasibility of real-time processing. The overall size and model parameters of the entire dehazing model are 20.75M and 6.8M, and the processing time for the single image is 0.026s. Experiments on NTIRE 2018 and NTIRE 2020 demonstrate that MSP can achieve superior performance among the state-of-the-art methods, such as PSNR, SSIM, LPIPS, and individual subjective evaluation.