• Title/Summary/Keyword: Internet application classification

Search Result 142, Processing Time 0.023 seconds

An Integrated Method for Application-level Internet Traffic Classification

  • Choi, Mi-Jung;Park, Jun-Sang;Kim, Myung-Sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.838-856
    • /
    • 2014
  • Enhanced network speed and the appearance of various applications have recently resulted in the rapid increase of Internet users and the explosive growth of network traffic. Under this circumstance, Internet users are eager to receive reliable and Quality of Service (QoS)-guaranteed services. To provide reliable network services, network managers need to perform control measures involving dropping or blocking each traffic type. To manage a traffic type, it is necessary to rapidly measure and correctly analyze Internet traffic as well as classify network traffic according to applications. Such traffic classification result provides basic information for ensuring service-specific QoS. Several traffic classification methodologies have been introduced; however, there has been no favorable method in achieving optimal performance in terms of accuracy, completeness, and applicability in a real network environment. In this paper, we propose a method to classify Internet traffic as the first step to provide stable network services. We integrate the existing methodologies to compensate their weaknesses and to improve the overall accuracy and completeness of the classification. We prioritize the existing methodologies, which complement each other, in our integrated classification system.

Application Traffic Classification using PSS Signature

  • Ham, Jae-Hyun;An, Hyun-Min;Kim, Myung-Sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2261-2280
    • /
    • 2014
  • Recently, network traffic has become more complex and diverse due to the emergence of new applications and services. Therefore, the importance of application-level traffic classification is increasing rapidly, and it has become a very popular research area. Although a lot of methods for traffic classification have been introduced in literature, they have some limitations to achieve an acceptable level of performance in real-time application-level traffic classification. In this paper, we propose a novel application-level traffic classification method using payload size sequence (PSS) signature. The proposed method generates unique PSS signatures for each application using packet order, direction and payload size of the first N packets in a flow, and uses them to classify application traffic. The evaluation shows that this method can classify application traffic easily and quickly with high accuracy rates, over 99.97%. Furthermore, the method can also classify application traffic that uses the same application protocol or is encrypted.

Study on the Functional Classification of IM Application Traffic using Automata (오토마타를 이용한 메신저 트래픽의 기능별 분류에 관한 연구)

  • Lee, Sang-Woo;Park, Jun-Sang;Yoon, Sung-Ho;Kim, Myung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8B
    • /
    • pp.921-928
    • /
    • 2011
  • The increase of Internet users and services has caused the upsurge of data traffic over the network. Nowadays, variety of Internet applications has emerged which generates complicated and diverse data traffic. For the efficient management of Internet traffic, many traffic classification methods have been proposed. But most of the methods focused on the application-level classification, not the function-level classification or state changes of applications. The functional classification of application traffic makes possible the in-detail understanding of application behavior as well as the fine-grained control of applications traffic. In this paper we proposed automata based functional classification method of IM application traffic. We verified the feasibility of the proposed method with function-level control experiment of IM application traffic.

Real-time Classification of Internet Application Traffic using a Hierarchical Multi-class SVM

  • Yu, Jae-Hak;Lee, Han-Sung;Im, Young-Hee;Kim, Myung-Sup;Park, Dai-Hee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.859-876
    • /
    • 2010
  • In this paper, we propose a hierarchical application traffic classification system as an alternative means to overcome the limitations of the port number and payload based methodologies, which are traditionally considered traffic classification methods. The proposed system is a new classification model that hierarchically combines a binary classifier SVM and Support Vector Data Descriptions (SVDDs). The proposed system selects an optimal attribute subset from the bi-directional traffic flows generated by our traffic analysis system (KU-MON) that enables real-time collection and analysis of campus traffic. The system is composed of three layers: The first layer is a binary classifier SVM that performs rapid classification between P2P and non-P2P traffic. The second layer classifies P2P traffic into file-sharing, messenger and TV, based on three SVDDs. The third layer performs specialized classification of all individual application traffic types. Since the proposed system enables both coarse- and fine-grained classification, it can guarantee efficient resource management, such as a stable network environment, seamless bandwidth guarantee and appropriate QoS. Moreover, even when a new application emerges, it can be easily adapted for incremental updating and scaling. Only additional training for the new part of the application traffic is needed instead of retraining the entire system. The performance of the proposed system is validated via experiments which confirm that its recall and precision measures are satisfactory.

A Classification-Based Virtual Machine Placement Algorithm in Mobile Cloud Computing

  • Tang, Yuli;Hu, Yao;Zhang, Lianming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.1998-2014
    • /
    • 2016
  • In recent years, cloud computing services based on smart phones and other mobile terminals have been a rapid development. Cloud computing has the advantages of mass storage capacity and high-speed computing power, and it can meet the needs of different types of users, and under the background, mobile cloud computing (MCC) is now booming. In this paper, we have put forward a new classification-based virtual machine placement (CBVMP) algorithm for MCC, and it aims at improving the efficiency of virtual machine (VM) allocation and the disequilibrium utilization of underlying physical resources in large cloud data center. By simulation experiments based on CloudSim cloud platform, the experimental results show that the new algorithm can improve the efficiency of the VM placement and the utilization rate of underlying physical resources.

Fixed IP-port based Application-Level Internet Traffic Classification (고정 IP-port 기반 응용 레벨 인터넷 트래픽 분석에 관한 연구)

  • Yoon, Sung-Ho;Park, Jun-Sang;Park, Jin-Wan;Lee, Sang-Woo;Kim, Myung-Sup
    • The KIPS Transactions:PartC
    • /
    • v.17C no.2
    • /
    • pp.205-214
    • /
    • 2010
  • As network traffic is dramatically increasing due to the popularization of Internet, the need for application traffic classification becomes important for the effective use of network resources. In this paper, we present an application traffic classification method based on fixed IP-port information. A fixed IP-port is a {IP address, port number, transport protocol}triple dedicated to only one application, which is automatically collected from the behavior analysis of individual applications. We can classify the Internet traffic more accurately and quickly by simple packet header matching to the collected fixed IP-port information. Therefore, we can construct a lightweight, fast, and accurate real-time traffic classification system than other classification method. In this paper we propose a novel algorithm to extract the fixed IP-port information and the system architecture. Also we prove the feasibility and applicability of our proposed method by an acceptable experimental result.

Game Traffic Classification Using Statistical Characteristics at the Transport Layer

  • Han, Young-Tae;Park, Hong-Shik
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.22-32
    • /
    • 2010
  • The pervasive game environments have activated explosive growth of the Internet over recent decades. Thus, understanding Internet traffic characteristics and precise classification have become important issues in network management, resource provisioning, and game application development. Naturally, much attention has been given to analyzing and modeling game traffic. Little research, however, has been undertaken on the classification of game traffic. In this paper, we perform an interpretive traffic analysis of popular game applications at the transport layer and propose a new classification method based on a simple decision tree, called an alternative decision tree (ADT), which utilizes the statistical traffic characteristics of game applications. Experimental results show that ADT precisely classifies game traffic from other application traffic types with limited traffic features and a small number of packets, while maintaining low complexity by utilizing a simple decision tree.

Research on Signature Maintenance Method for Internet Application Traffic Identification using Header Signatures (헤더 기반 인터넷 응용 트래픽 분석을 위한 시그니쳐 관리 방법에 관한 연구)

  • Yoon, Sung-Ho;Kim, Myung-Sup
    • Journal of Internet Computing and Services
    • /
    • v.12 no.6
    • /
    • pp.19-33
    • /
    • 2011
  • The need for application traffic classification becomes important for the effective use of network resources. The header-based identification method uses the header signature {IP address, port number, transport layer protocol TCP/UDP)}extracted from Internet application server to overcome some limitations overhead, payload encryption, etc.) of previous methods. A lots signature is extracted because this method uses header information of server. So, we need a maintenance method to keep essential signatures. In this paper, we represent the signature maintenance method using properties of identified traffic and history of the signature. Also, we prove the feasibility and applicability of our proposed method by an acceptable experimental result.

Study on Classification Scheme for Multilateral and Hierarchical Traffic Identification (다각적이고 계층적인 트래픽 분석을 위한 트래픽 분류 체계에 관한 연구)

  • Yoon, Sung-Ho;An, Hyun-Min;Kim, Myung-Sup
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.2
    • /
    • pp.47-56
    • /
    • 2014
  • Internet traffic has rapidly increased due to the supplying wireless devices and the appearance of various applications and services. By increasing internet traffic rapidly, the need of Internet traffic classification becomes important for the effective use of network resource. However, the traffic classification scheme is not much studied comparing to the study for classification method. This paper proposes novel classification scheme for multilateral and hierarchical traffic identification. The proposed scheme can support multilateral identification with 4 classification criteria such as service, application, protocol, and function. In addition, the proposed scheme can support hierarchical analysis based on roll-up and drill-down operation. We prove the applicability and advantages of the proposed scheme by applying it to real campus network traffic.

Hierarchical Internet Application Traffic Classification using a Multi-class SVM (다중 클래스 SVM을 이용한 계층적 인터넷 애플리케이션 트래픽의 분류)

  • Yu, Jae-Hak;Lee, Han-Sung;Im, Young-Hee;Kim, Myung-Sup;Park, Dai-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.7-14
    • /
    • 2010
  • In this paper, we introduce a hierarchical internet application traffic classification system based on SVM as an alternative overcoming the uppermost limit of the conventional methodology which is using the port number or payload information. After selecting an optimal attribute subset of the bidirectional traffic flow data collected from the campus, the proposed system classifies the internet application traffic hierarchically. The system is composed of three layers: the first layer quickly determines P2P traffic and non-P2P traffic using a SVM, the second layer classifies P2P traffics into file-sharing, messenger, and TV, based on three SVDDs. The third layer makes specific classification of the entire 16 application traffics. By classifying the internet application traffic finely or coarsely, the proposed system can guarantee an efficient system resource management, a stable network environment, a seamless bandwidth, and an appropriate QoS. Also, even a new application traffic is added, it is possible to have a system incremental updating and scalability by training only a new SVDD without retraining the whole system. We validate the performance of our approach with computer experiments.