• Title/Summary/Keyword: Internet Video Coding

Search Result 108, Processing Time 0.019 seconds

An Advanced Coding for Video Streaming System: Hardware and Software Video Coding

  • Le, Tuan Thanh;Ryu, Eun-Seok
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.51-57
    • /
    • 2020
  • Currently, High-efficient video coding (HEVC) has become the most promising video coding technology. However, the implementation of HEVC in video streaming systems is restricted by factors such as cost, design complexity, and compatibility with existing systems. While HEVC is considering deploying to various systems with different reached methods, H264/AVC can be one of the best choices for current video streaming systems. This paper presents an adaptive method for manipulating video streams using video coding on an integrated circuit (IC) designed with a private network processor. The proposed system allows to transfer multimedia data from cameras or other video sources to client. For this work, a series of video or audio packages from the video source are forwarded to the designed IC via HDMI cable, called Tx transmitter. The Tx processes input data into a real-time stream using its own protocol according to the Real-Time Transmission Protocol for both video and audio, then Tx transmits output packages to the video client though internet. The client includes hardware or software video/audio decoders to decode the received packages. Tx uses H264/AVC or HEVC video coding to encode video data, and its audio coding is PCM format. By handling the message exchanges between Tx and the client, the transmitted session can be set up quickly. Output results show that transmission's throughput can be achieved about 50 Mbps with approximately 80 msec latency.

myEvalSVC: an Integrated Simulation Framework for Evaluation of H.264/SVC Transmission

  • Ke, Chih-Heng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.379-394
    • /
    • 2012
  • The ever-increasing demand for H.264 scalable video coding (H.264/SVC) distribution motivates researchers to devise ways to enhance the quality of video delivered on the Internet. Furthermore, researchers and practitioners in general depend on computer simulators to analyze or evaluate their designed network architecture or proposed protocols. Therefore, a complete toolset, which is called myEvalSVC, for evaluating the delivered quality of H.264/SVC transmissions in a simulated environment is proposed to help the network and video coding research communities. The toolset is based on the H.264 Scalable Video coding streaming Evaluation Framework (SVEF) and extended to connect to the NS2 simulator. With this combination, people who work on video coding can simulate the effects of a more realistic network on video sequences resulting from their coding schemes, while people who work on network technology can evaluate the impact of real video streams on the proposed network architecture or protocols. To demonstrate the usefulness of the proposed new toolset, examples of H.264/SVC transmissions over 802.11 and 802.11e are provided.

Distributed Video Coding for Illumination Compensation of Multi-view Video

  • Park, Sean-Ae;Sim, Dong-Gyu;Jeon, Byeung-Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1222-1236
    • /
    • 2010
  • In this paper, we propose an improved distributed multi-view video coding method that is robust to illumination changes among different views. The use of view dependency is not effective for multi-view video because each view has different intrinsic and extrinsic camera parameters. In this paper, a modified distributed multi-view coding method is presented that applies illumination compensation when generating side information. The proposed encoder codes DC values of discrete cosine transform (DCT) coefficients separately by entropy coding. The proposed decoder can generate more accurate side information by using the transmitted DC coefficients to compensate for illumination changes. Furthermore, AC coefficients are coded with conventional entropy or channel coders depending on the frequency band. We found that the proposed algorithm is about 0.1~0.5 dB better than conventional algorithms.

Video Coding Algorithm Based on High Efficiency Video Coding (HEVC) and Hybrid Transforms

  • Wang, Chengyou;Shan, Rongyang;Zhou, Xiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4448-4466
    • /
    • 2018
  • In recent years, due to its high efficiency and better performance, the high efficiency video coding (HEVC) has become the most common compression standard in the field of video coding. In this paper, the framework of HEVC is deeply analyzed, and an improved HEVC video coding algorithm based on all phase biorthogonal transform (APBT) is proposed, where APBT is utilized to replace the discrete cosine transform (DCT) and discrete sine transform (DST) in original HEVC standard. Based on the relationship between APBT and DCT, the integer APBT is deduced. To further improve the coding performance, an optimal HEVC video coding algorithm based on hybrid APBT is proposed. The coding performance of the proposed HEVC coding algorithm is improved without increasing the complexity. Experimental results show that compared with HEVC standard algorithm, the improved HEVC video coding algorithm based on hybrid APBT can improve the coding performance of chrominance components by about 0.3%.

Coding Tools for Enhancing Coding Efficiency of MPEG Internet Video Coding (IVC) (MPEG 인터넷 비디오 코딩(IVC)의 부호화 효율 개선을 위한 부호화 툴)

  • Yang, Anna;Lee, Jae-Yung;Han, Jong-Ki;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.21 no.3
    • /
    • pp.319-329
    • /
    • 2016
  • Internet Video Coding (IVC) is a royalty-free codec currently being developed in MPEG. Coding efficiency of IVC codec has been steadily enhanced and it was reported that the performance of Committee Draft (CD) version is comparable to H.264/AVC High Profile (HP) in terms of objective and subjective qualities. In this paper, we present some coding tools that have been proposed for enhancing the coding efficiency of IVC during the developing process in MPEG along with brief overview of IVC codec architecture and coding algorithms. The coding tools include both of normative tools and informative tools such as non-reference P frame coding, DC mode intra prediction, Lagrange multiplier selection, and extension of chroma intra prediction modes. Improvement obtained by each tool is presented in terms of algorithm and coding gain based on the experiments. As a result of the experiment, the coding tools give the average bit saving of 8.8%, 0.4%, 0.4%, and 0.0%, respectively, in the low-delay coding mode.

Non-Reference P Frame Coding for Low-Delay Encoding in Internet Video Coding (IVC의 저지연 부호화 모드를 위한 비참조 P 프레임의 부호화 기법)

  • Kim, Dong-Hyun;Kim, Jin-Soo;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.19 no.2
    • /
    • pp.250-256
    • /
    • 2014
  • Non-reference P frame coding is used to enhance coding efficiency in low-delay encoding configuration of Internet Video Coding (IVC), which is being standardized as a royalty-free video codec in MPEG. The existing method of non-reference P frame coding which was adopted in the reference Test Model of IVC (ITM) 4.0 adaptively applies a non-reference P frame with a fixed coding structure based on the magnitude of motion vectors (MVs), however, which unexpectedly degrades the coding efficiency for some sequences. In this paper, the existing non-reference P frame coding is improved by changing non-reference P frame coding structure and applying a new adaptive method using the ratio of the amount of generated bits of non-reference frames to that of reference frames as well as MVs. Experimental results show that the proposed non-reference P frame coding gives 6.6% BD-rate bit saving in average over ITM 7.0.

Optimizing the Joint Source/Network Coding for Video Streaming over Multi-hop Wireless Networks

  • Cui, Huali;Qian, Depei;Zhang, Xingjun;You, Ilsun;Dong, Xiaoshe
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.800-818
    • /
    • 2013
  • Supporting video streaming over multi-hop wireless networks is particularly challenging due to the time-varying and error-prone characteristics of the wireless channel. In this paper, we propose a joint optimization scheme for video streaming over multi-hop wireless networks. Our coding scheme, called Joint Source/Network Coding (JSNC), combines source coding and network coding to maximize the video quality under the limited wireless resources and coding constraints. JSNC segments the streaming data into generations at the source node and exploits the intra-session coding on both the source and the intermediate nodes. The size of the generation and the level of redundancy influence the streaming performance significantly and need to be determined carefully. We formulate the problem as an optimization problem with the objective of minimizing the end-to-end distortion by jointly considering the generation size and the coding redundancy. The simulation results demonstrate that, with the appropriate generation size and coding redundancy, the JSNC scheme can achieve an optimal performance for video streaming over multi-hop wireless networks.

Fast Intraframe Coding for High Efficiency Video Coding

  • Huang, Han;Zhao, Yao;Lin, Chunyu;Bai, Huihui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.1093-1104
    • /
    • 2014
  • The High Efficiency Video Coding (HEVC) is a new video coding standard that can provide much better compression efficiency than its predecessor H.264/AVC. However, it is computationally more intensive due to the use of flexible quadtree coding unit structure and more choices of prediction modes. In this paper, a fast intraframe coding scheme is proposed for HEVC. Firstly, a fast bottom-up pruning algorithm is designed to skip the mode decision process or reduce the candidate modes at larger block size coding unit. Then, a low complexity rough mode decision process is adopted to choose a small candidate set, followed by early DC and Planar mode decision and mode filtering to further reduce the number of candidate modes. The proposed method is evaluated by the HEVC reference software HM8.2. Averaging over 5 classes of HEVC test sequences, 41.39% encoding time saving is achieved with only 0.77% bitrate increase.

Capacity aware Scalable Video Coding in P2P on Demand Streaming Systems

  • Xing, Changyou;Chen, Ming;Hu, Chao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2268-2283
    • /
    • 2013
  • Scalable video coding can handle peer heterogeneity of P2P streaming applications, but there is still a lack of comprehensive studies on how to use it to improve video playback quality. In this paper we propose a capacity aware scalable video coding mechanism for P2P on demand streaming system. The proposed mechanism includes capacity based neighbor selection, adaptive data scheduling and streaming layer adjustment, and can enable each peer to select appropriate streaming layers and acquire streaming chunks with proper sequence, along with choosing specific peers to provide them. Simulation results show that the presented mechanism can decrease the system's startup and playback delay, and increase the video playback quality as well as playback continuity, and thus it provides a better quality of experience for users.

Low-Complexity Motion Estimation for H.264/AVC Through Perceptual Video Coding

  • An, Byoung-Man;Kim, Young-Seop;Kwon, Oh-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.8
    • /
    • pp.1444-1456
    • /
    • 2011
  • This paper presents a low-complexity algorithm for an H.264/AVC encoder. The proposed motion estimation scheme determines the best coding mode for a given macroblock (MB) by finding motion-blurred MBs; identifying, before motion estimation, an early selection of MBs; and hence saving processing time for these MBs. It has been observed that human vision is more sensitive to the movement of well-structured objects than to the movement of randomly structured objects. This study analyzed permissible perceptual distortions and assigned a larger inter-mode value to the regions that are perceptually less sensitive to human vision. Simulation results illustrate that the algorithm can reduce the computational complexity of motion estimation by up to 47.16% while maintaining high compression efficiency.