
Journal of Internet Computing and Services(JICS) 2020. Aug.: 21(4): 51-57 51

An Advanced Coding for Video Streaming
System: Hardware and Software Video Coding

Tuan Thanh Le1 Eun-Seok Ryu2*

ABSTRACT

Currently, High-efficient video coding (HEVC) has become the most promising video coding technology. However, the

implementation of HEVC in video streaming systems is restricted by factors such as cost, design complexity, and compatibility with

existing systems. While HEVC is considering deploying to various systems with different reached methods, H264/AVC can be one of the

best choices for current video streaming systems. This paper presents an adaptive method for manipulating video streams using video

coding on an integrated circuit (IC) designed with a private network processor. The proposed system allows to transfer multimedia data

from cameras or other video sources to client. For this work, a series of video or audio packages from the video source are forwarded

to the designed IC via HDMI cable, called Tx transmitter. The Tx processes input data into a real-time stream using its own protocol

according to the Real-Time Transmission Protocol for both video and audio, then Tx transmits output packages to the video client

though internet. The client includes hardware or software video/audio decoders to decode the received packages. Tx uses H264/AVC

or HEVC video coding to encode video data, and its audio coding is PCM format. By handling the message exchanges between Tx

and the client, the transmitted session can be set up quickly. Output results show that transmission's throughput can be achieved

about 50 Mbps with approximately 80 msec latency.

☞ keyword : Video streaming, RTP, H.264, HEVC, video coding

1. Introduction

Recently, the HEVC [1] has become the top technology

in the field of video coding. Compared to the predecessor video

coding H264, HEVC (H.265) is an efficient technology that

allows saving twice bandwidth while unchanged video

resolution. The first version of HEVC achieved an

approximately 50% bitrate reduction compared to its

predecessor H.264/AVC with equivalent subjective quality [2].

Over the past few years, many video transmission systems,

CCTV systems, or online video services have gradually moved

to the HEVC application, which increases bandwidth

1 Dept. of Computer Engineering, Gachon University, Seongnam,
13342, Korea

2 Dept. of Computer Education, Sungkyunkwan University, Seoul,
03063, Korea

* Corresponding author: esryu@skku.edu
[Received 25 May 2020, Reviewed 15 June 2020(R2 12 July
2020), Accepted 26 July 2020]
☆ This research was supported by the MSIT (Ministry of Science and

ICT), Korea, under the ITRC(Information Technology Research
Center) support program (IITP-2019-2017-0-01630) supervised by
the IITP(Institute for Information & communications Technology
Promotion).

☆ A preliminary version of this paper was presented at ICONI
2019.

responsiveness. Hence, current video service platforms need

to upgrade their construction to support HEVC coding.

However, HEVC implementation also has limitations such as

high cost, system complexity, compatibility with existing video

service systems. Therefore, in current times, the H.264-AVC

codec [3] is still an effective choice.

Video codec H.264/AVC is able to encode and decode video

at a low cost in terms of processing time and resource usage.

The main drawback of H.264 is bandwidth when compared

to H.265/HEVC. Especially in real-time streaming systems, the

bandwidth limitation has become even more urgent in

multi-channel contexts. Hence, to advance the efficiency of

H.264 video streaming services, we propose a solution to

improve the streaming's bandwidth using a private designed

IC that comes with the H.264 video codec and PCM audio

inside. We implemented the designed IC within a private

network processor to efficiently embed the H.264/AVC codec.

By deploying the encoder and decoder under kernel space in

both sides (server and client), the proposed system isable to

minimize processing time thereby improving overall

performance.

http://dx.doi.org/10.7472/jksii.2020.21.4.51

J. Internet Comput. Serv.
ISSN 1598-0170 (Print) / ISSN 2287-1136 (Online)
http://www.jics.or.kr
Copyright ⓒ 2020 KSII

An Advanced Coding for Video Streaming System: Hardware and Software Video Coding

52 2020. 8

(Figure 1) The conceptual architecture of the proposed

system

In addition, to increase the performance of video streaming

over the internet environment, we also developed an adaptive

transport protocol based on the Real-Time Transport Protocol

(RTP). The implementation of the customized protocol has

been done according to [4] and [5]. The customized protocol

called QRTP, allows the video streaming system to be able

to meet real-timestream with an average bitrate of

approximately 50 Mbps. Finally, the H.264 and QRTP are

deployed under Linux kernel space, then this idea allows us

to apply HEVC codec into designed IC similar to H.264.

The remainder of this paper is divided into sections as

follows: Section 2 describes the main idea of the proposed

method based on the video coding point of view and RTP

protocol. Section 3 provides the outcome of the performance

of the proposed system. Finally, section 4 shows the

conclusions of the proposed method and gives further research.

2. QRTP Streaming System

2.1 The proposed streaming system

As shown in Figure 1, the proposed solution provides an

overview of efficient streaming service according to video

encoder and decoder on designed IC. Video sources such as

cameras, mini PC, etc. transmit video frames into the Tx device

via HDMI connection. Next step, Tx's encoder encodes these

frames into a video bitstream using H.264 or HEVC codecs.

The video bitstream is organized as a sequence of Network

Abstract Layer (NAL) packets. To transmit NAL packets to

client, QRTP will attach each NAL packet as the payload field

of a QRTP packet. We implemented a real-time transport

protocol QRTP based on RTP [5].

(Figure 2) Functional flow ofsystem with Tx/Rx.

The proposed system includes two kinds of client: hardware

designed IC (Rx) and software VLC video/audio playback [6].

The designs of Rx are almost like Tx except for its decoder.

To handle video processing tasks, Tx and Rx use a private

network processor, which was embedded on our integrated

circuit. As shown in Figure 2, the packet flow of the proposed

system is described in case using Tx and Rx. Moreover, all

tasks are deployed under kernel space to reduce processing

time. In this way, the proposed system can provide a

high-bandwidth connection for video streaming. If the video

client uses a VLC player as a video client, the VLC player

can handshake pairing with Tx as the same as Rx. The QRTP

protocol over UDP/IP stack includes QRTP packet format for

each layer of internet model. Therefore, H.264 or H.265 NAL

packets are encapsulated as payload (data part) of QRTP

packet. The length of QRTP packet is around 22 bytes ~ 1038

bytes for audio, video, and USB interrupt transfer data. The

ethernet header length is 14 bytes, IP header length is 20 bytes,

and UDP header length is 8 bytes.

(Figure 3) QRTP-VLC Structure

An Advanced Coding for Video Streaming System: Hardware and Software Video Coding

한국 인터넷 정보학회 (21권4호) 53

Payload Description Direction

0x71 Connection request Rx->Tx

0x72 Connection response Tx->Rx

0x78 Video resolution: vertical size Tx->Rx

0x79 Video resolution: horizontal size Tx->Rx

0x7A Resolution ACK Rx->Tx

0x7F Video stream req. Rx->Tx

0x00 Video stream data Tx->Rx

0x03 Audio stream data Tx->Rx

0x7C Audio sampling rate Tx->Rx

0x7B Reset flow Tx->Rx

(Table 1) Payload TypeMap of QRTP

Figure 3 shows that the VLC video playback implementation

with QRTP protocol access module inside [7]. Furthermore,

the modified VLC version also allows configurable options

for QRTP as same as RTP. QRTP protocol was implemented

based on the original RTP. As shown in table 1, the QRTP

payload type (PT) map was exactly designed to support both

procedures: pairing flow and video/audio streaming procedure.

PT value in table 1 is one byte in hexadecimal format. For

example, the pairing flow exchanges control messages between

Tx and client. This procedure will send/receive packets with

payload types such as 0x71, 0x72, 0x78 0x79, 0x7A, and 0x7F.

Those others are for video streaming session or session control.

(Figure 4) Pairing flow betweenTx and VLC/ Rx client

The pairing flow procedure allows client to send requests

to Tx and establishing a connect session between them. Then,

pairing flow will initialize parameters for video/audio sessions

before stream coming to client. Figure 4 shows that the pairing

flow can be divided step-by-step as follows:

1) MAC ARP and ICMP pings: To clearly trace the internet

route between client and server. Additionally, these pings

also allow Tx server and client to correctly verifying

their partner.

2) Connection request/reply: Establishing a connection and

making ACK message exchanges.

3) Resolution confirmation: Allows Tx to send resolution

in detail double times for setting vertical size and

horizontal size.

4) Resolution ACK: Client replies ACK to Tx to confirm

that resolution setting was done.

5) Video stream request: Everything is ready. Client sends

a video stream request to Tx.

6) Video & audio data: Tx streams video and audio data

to client.

7) Audio sampling rate: while Tx was streaming video/

audio, it can send audio sampling rate in detail to client.

The client does confirmation and reconfigure its audio

parameters.

2.2 Audio streaming

For multimedia support, an audio stream (with PT 0x03)

is also integrated into parallel with a video stream. As

illustrated in Figure 1, the audio stream can be transmitted

to the client on the audio port, which is determined by the

video port plus 1. The audio data is composed of 4 bytes.

Figure 5below shows the audio data structure. "Left" data when

the LR (Left-Right) bit is '0' and "Right" data when it is '0'.

The audio data is composed of 3 bytes. Audio stream format

is PCM-32 with support stereo sound.

(Figure 5) Audio data packet structure

An Advanced Coding for Video Streaming System: Hardware and Software Video Coding

54 2020. 8

2.3 Network USB

To enable user-client can control video source, the proposed

method uses network USB on video client Rx to support I/O

devices such as mouse and keyboard. As shown in Figure 1,

network USB allows Rx to send interrupt transfer signals of

mouse/keyboard to Tx by using QRTP protocol. The payload

size of interrupt transfer is 8 bytes. Tx gets these interrupt

transfers and transform them into mouse/keyboard events at

video source. Currently, networkUSB supports ports version

2.0 or 3.0. Specified details of interrupt transfers can be

reviewed in [8], [9].

(Figure 6) QSDK architecture and work flow

Network USB includes an SDK as in Figure 6, which’s

called QSDK. The main core of SDK was implemented as

a private library (QMCSL lib) based on libusb-1.0. QSDK

provides APIs that allows developing application regarding

USB devices. For example, a Rx network USB application

can use APIs to create a connect session to Tx, or send USB

message of 22 bytes to Tx, etc.

The APIs of QSDK can be described as follows: Initialize

function: QSDK initializes USB interface list, check parameters

according to vendor ID (VID) and product ID (PID) Opening

sessio function: QSDK detach specified interface from kernel

space to take the authorship Claiming interface function:

QSDK claim interface based on VID, PID to create new session

Open Network function: Open UDP socket to connect to Tx

device via UDP port Gathering transfers function: QSDK

interacts with USB device to collect interrupt transfers from

USB device by exchanging messages Send function: Allows

application sending USB interrupt transfer to Tx device

Closing session function: QSDK send a message to close all

transfers. Release authorship, clear memory and remove

temporary storage.And some other functional APIs for utility

and statistic.

3. Performance Evaluation

In order to prove the real performance of the proposed

system, we set up a testbed as shown in Figure 7. A powerful

PC was set up with a Core i7-7700K 4.2 GHz processor, 32

GB of memory with Linux Ubuntu OS 18.04 GCC 7.4.0 as

VLC client. We set up a Canon EOS 5D camera [10] an input

video camcorder. A Raspberry Pi 2 Model B [11] also was

installed as the video source. Additionally, we used two

designed ICs board Tx and Rx as server and client,

respectively. The diagram in Figure 8 shows the working flow

of Tx encoder and Rx decoder in detail.

 (Figure 7) The testbed‘s scenario

(a)

(b)

(Figure 8) (a) Tx encoder block diagram and (b)Rx

decoder block diagram.

An Advanced Coding for Video Streaming System: Hardware and Software Video Coding

한국 인터넷 정보학회 (21권4호) 55

Figure 9 shows the average throughput of video stream

around 49.57 Mbps for video stream with 1920x1080 (1080p)

resolution, and 19.46 Mbps with 1080x720 (720p) resolution.

Additionally, the packet loss rate not over 0.45 % in any case.

Despite, QRTP is based on RTP over UDP/IP stack, the packet

loss rate of 0.43% allows the proposed system can handle the

real-time stream. Furthermore, the proposed system can apply

the Forward Error Correction (FEC) [12]to recover the packet

loss issue. This leads to QRTP with FEC can decrease the

packet loss rate to less than 0.1%.

We used the FFmpeg library with dependent libraries [13]

as evaluation software. Additionally, the VLC software version

4.0.0-dev was used as video playback of the video client. H.264

video encoder and decoder support resolution from 16x16

(minimum) to 1920x1080 (maximum). Video codec H.264

provides support for base, main and high profile within level

4.2 [14].

As shown in Table 2, the video stream with 1080p

resolution always gets the latency that less than 82 msec.

In the case of lower resolution, the latency is around

73~82msec. The average latency for all possible resolutions

is approximately 80 msec.

To analyze the quality of the decoder, according to [15]

and [16], we progressed the comparisons between the original

video at video sources and reconstructed videoat video client.

Table 3 shows that the performing "unsatisfactory" factor

compared to other quality metrics when it comes to estimating

the quality of images and videos as perceived by humans

according to Y channel PSNR values. We confirmed the

comparisons for both 1080p and 720p videos. Output results

proved that all Y-PSNR values are higher than 38 (dB)

threshold. This means that the quality of reconstructed videos

at the client is reasonable to feel fully immersed in video

streaming as perceived by humans.

(Table 2) The delay forvarious video sources

Video Source 720p 1080p

Raspberry Pi 2 71.36 msec 78.93 msec

Canon EOS 73.47 msec 81.52 msec

The audio stream is stored as a .pcm file in Rx client in

detail (Audio format :pcm; Sampling rate: 12~192 KHz

channels: 2). This PCM file can be converted to AACformat

before playing by a speaker. The audio sampling rate are vary

from 12 kHz to 192 kHz. The most popular rates are 32 kHz,

44.1kHz and 48 kHz.

To verify the performance of the proposed method, we

collected all experimental results and compared them to

RTMP/H264 solution [17] and MDC adaptation [18]. The

RTMP/H264 is a real-time streaming framework based on

Realtime Messaging Protocol and H.264 encoding. MDC

adaptation is network-adaptive multiple description coding

(MDC) method for enhanced H.264 video streaming over

multipath RTP transmissions.

As shown in table 4, our proposed method can provide the

average throughput approximate 49.02 Mbps, while

RTMP/H264 was giving 0.55 Mbps for wired-network

communications and 54 Mbps for wireless communication.

Moreover, the average delay of QRTP/H.264 is 80.04 msec

far lower than RTMP/H264’s delay of 141 msec. The packet

loss rate (PLR) of the proposed method is around 0~0.43%

without FEC that higher than RTMP/H264’s PLR. The main

reason is that RTMP/H264 was implemented based on TCP,

and our QRTP/H.264 is based on UDP. By enabling FEC

support [19], QRTP can give the PLR that lower than 0.1%.

Additionally, from [20], we can confirm that the PLR value

lowerthan 5% is proper for live video streaming service.

Compared to the MDC adaptation solution, our proposed

method also gives the PSNR value of 39.11 dB better than

38.85 dB at a packet loss rate lower than 5%. More details

of the packet loss rate model can be reviewed in [17].

(Figure 9) Average Throughputof QRTP/H.264 streaming

An Advanced Coding for Video Streaming System: Hardware and Software Video Coding

56 2020. 8

(Table 3) Y-PSNRfor various video sources

Video source 720p 1080p

Raspberry Pi 2 41.46 dB 40.19 dB

Canon EOS 5D 38.25 dB 38.03 dB

(Table 4) RTMP/H264 and QRTP/H.264 Comparison

Performance

metrics
 RTMP/H264 QRTP/H264

Average

Throughput

0.55 Mbps

 54 Mbps
49.02 Mbps

Average Packet

Loss
0~0.4 %

0~0.43 %

non-FEC

Average Delay 141.75 msec 80.04 msec

4. Conclusion

This paper presents an adaptive video streaming method

by using efficient video codecs on both hardware and software.

The experimental results proved that our method can provide

high-speed video streaming in real-time. The proposed system

can provide video/audio streaming with a throughput of

approximately 50 Mbps and latency around 80 msec.

Furthermore, the proposed method also allows improving the

video streaming systems such as upgrading HEVC video codec,

extending service by adding control messages, and more

important tasks.

 In the future, we are going to build a standard SDKthat

allows releasing packaged software.

References

[1] JCT-VC, “High Efficiency Video Coding”. Available:

https://hevc.hhi.fraunhofer.de/

[2] J.-R. Ohm,G. J. Sullivan, H. Schwarz, T. K. Tan, and

T. Wiegand, “Comparison of thecoding efficiency of

video 344 coding standards—Including High-Efficiency

VideoCoding (HEVC)”, IEEE Trans. Circuits Syst. Video

Technol., 345 vol. 22, no. 12,pp. 1669–1684, Dec. 2012.

https://doi.org/10.1109/TCSVT.2012.2221192

[3] ST. Wiegandand Gary J. Sullivan, “Overview of the

H.264/AVC Video Coding Standard”, IEEETransactions

on 349 Circuits and Systems for Video Technology,

Vol.13, No.7,p.p 560 - 576, IEEE, July 2003.

https://doi.org/10.1109/TCSVT.2003.815165

[4] IETF, RFC1889, “Real-Time Transport Protocol RFC

1889”. Available: https://tools.ietf.org/html/rfc1889

[5] IETF, “RTPProfile for Audio and Video Conferences

with Minimal Control RFC 1890”.Available:

https://tools.ietf.org/html/rfc1890

[6] VLC, “VideoLan Player”. Available:

https://www.videolan.org/vlc/index.html

[7] VLC, “VLCcore library – modules”. Available:

https://wiki.videolan.org/Documentation:Modules/

[8] Changyi Gu, “Building Embedded Systems:

Programmable Hardware”, 2016.

https://www.amazon.com/Building-Embedded-Systems-

Programmable-Hardware-ebook/dp/B01HUOXFXC

[9] BeyondLogic, “USB in a Nutshell”, 2020. Available:

https://www.beyondlogic.org/usbnutshell/usb4.shtml#Int

errupt

[10] "Raspberry Pi 2 model Bproduct”. Available.

https://www.raspberrypi.org/products/raspberry-pi-2-mod

el-b/

[11] Canon, “Canon EOS 5D Mark IV”.[Online]. Available:

https://www.usa.canon.com/internet/portal/us/home/prod

ucts/details/cameras/eos-dslr-and-mirrorless-cameras/dslr/

eos-5d-mark-iv

[12] G. Charlet and P. Pecci, “Undersea Fiber Communication

Systems (The Second Edition) – Forward Error

Correction”, 2016. Available:

https://www.sciencedirect.com/topics/engineering/forwar

d-error-correction

[13] FFMPEG, “FFmpeg softwareversion 4.0.2 and document

guide”. [online]. Available:

https://ffmpeg.org/download.html#get-sources

[14] MPEG-4 AVC/H.264 High Profile /Level 4.2 Video

Compression. [online]. Available:

http://dicom.nema.org/medical/dicom/2017e/output/chtml

/part05/sect_A.4.7.html

[15] Imran Ullah Khan et al., “Performance Analysis of H.264

Video Decoder: Algorithm and Applications”, 2015

International Conference on Energy Economics and

Environment (ICEEE), Mar. 2015.

https://doi.org/10.1109/EnergyEconomics.2015.7235096

[16] S. Paulikas, “Estimation ofVideo Quality of H.264/AVC

Video Streaming”, EuroCon 2013, July 2013.

http://dicom.nema.org/medical/dicom/2017e/output/chtml/part05/sect_A.4.7.html

An Advanced Coding for Video Streaming System: Hardware and Software Video Coding

한국 인터넷 정보학회 (21권4호) 57

◐ 저 자 소 개 ◑

Le Thanh Tuan

2010 B.S. in Electronic and Telecommunication Engineering, Hanoi University of Science and Technology,

Hanoi, Vietnam

2013 M.S. in IT Engineering, Kongju National University, Gongju, Korea

2017.09~current: Ph.D. course student in Gachon University, Seongnam, Korea

Research Interests: Video source coding, Wireless mobile system

E-mail: tuanlt@gc.gachon.ac.kr

Eun-Seok Ryu

1999 B.S. in Computer Science, Korea University, Seoul, Korea

2001 M.S. in Computer Science and Engineering, Korea University, Seoul, Korea

2008 Ph.D. in Computer Science and Engineering, Korea University, Seoul, Korea

2008.03~2008.08: Research Professor, Korea University, Seoul, Korea

2008.09~2010.12: Postdoctoral Research Fellow, Georgia Tech., Atlanta, GA, USA

2011.01~2014.02: Staff Engineer, InterDigital Labs, San Diego, CA, USA

2014.03~2015.02: Principal Engineer (Director), Samsung Electronics, Suwon, Korea

2015.03~2019.08: Assistant Professor, Gachon University, Seongnam, Korea

2019.09~current: Assistant Professor, Sungkyunkwan University (SKKU), Seoul, Korea

Research Interests: Multimedia communications and system, Video coding and standardization

E-mail: esryu@skku.edu

https://doi.org/10.1109/EUROCON.2013.6625056

[17] A. Nurrohman and M. Abdurohman, “High Performance

Streaming Based on H264 and Real Time Messaging

Protocol(RTMP)”, 2018 6th International Conference on

Information and Communication Technology (ICoICT),

May 2018. https://doi.org/10.1109/ICoICT.2018.8528770

[18] P. Correia, P. Assuncao and V.Silva, “Enhanced

H.264/AVC Video Streaming using Network-adaptive

Multiple Description Coding”, 2011 IEEE EUROCON,

April 2011.

https://doi.org/10.1109/EUROCON.2011.5929296

[19] VLC with FEC support. Available:

https://github.com/n2i911/vlc-with-fec

[20] Cisco Video Quality of Service.[online]. Available:

https://www.cisco.com/c/en/us/support/docs/quality-of-se

rvice-qos/qos-video/212134-Video-Quality-of-Service-Q

OS-Tutorial.html

https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-video/212134-Video-Quality-of-Service-QOS-Tutorial.html

