
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 3 Mar. 2014                                              1093 

Copyright ⓒ 2014 KSII  

 

Part of this paper is accepted for publication in IEEE Proc. VCIP2013, Nov 17-20, Kuching, Malaysia.  This work 

was supported in part by the 973 Program under Grant 2012CB316400; the National Natural ScienceFunds for 

Distinguished Young Scholar under Grant 61025013; the National Natural Science Foundation of China, under 

Grant 61210006, 61202240,61272051, and 6101393; and the Program for Changjiang Scholars and Innovative 

Research Team in University. 

 

http://dx.doi.org/10.3837/tiis.2014.03.022 

Fast Intraframe Coding for High Efficiency 
Video Coding 

Han Huang
1,2

, Yao Zhao
1,2

, Chunyu Lin
1,2

 and Huihui Bai
1,2

 

 
 1 Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China 

2Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing 100044, China 

[e-mail: {huanghan,yzhao,cylin,hhbai}@bjtu.edu.cn] 

*Corresponding author: Yao Zhao 

 

Received December 26, 2013; accepted February 9, 2014; published March 31, 2014 

 

 

Abstract 
 

The High Efficiency Video Coding (HEVC) is a new video coding standard that can provide 

much better compression efficiency than its predecessor H.264/AVC. However, it is 

computationally more intensive due to the use of flexible quadtree coding unit structure and 

more choices of prediction modes. In this paper, a fast intraframe coding scheme is proposed 

for HEVC. Firstly, a fast bottom-up pruning algorithm is designed to skip the mode decision 

process or reduce the candidate modes at larger block size coding unit. Then, a low complexity 

rough mode decision process is adopted to choose a small candidate set, followed by early DC 

and Planar mode decision and mode filtering to further reduce the number of candidate modes. 

The proposed method is evaluated by the HEVC reference software HM8.2. Averaging over 5 

classes of HEVC test sequences, 41.39% encoding time saving is achieved with only 0.77% 

bitrate increase.  
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1. Introduction 

The High Efficiency Video Coding (HEVC) is a new video coding standard developed 

by the Joint Collaborative Team on Video Coding (JCT-VC) formed by the ITU-T Video 

Coding Experts Group (VCEG) and ISO/IEC Moving Picture Experts Group (MPEG). In 

comparison with its predecessor H.264/AVC, 50% bitrate reduction is achieved for equal 

perceptual quality [1].  While the same block-based hybrid coding structure as in H.264/AVC 

is adopted in HEVC, each coding tool is improved with new technical features and 

characteristics. As opposed to the fixed size macro-block (MB) in H.264/AVC, the coding tree 

unit (CTU) in HEVC is configurable and its size can be chosen from 64x64, 32x32 and 16x16. 

A CTU consists of one coding unit (CU) or can be recursively split into a quadtree of CUs. The 

largest size of a CU is equal to that of a CTU, and the smallest is 8x8. An example of CU 

splitting and its corresponding quadtree is shown in Fig. 1. The dotted lines with arrows 

represent the processing order of the CUs in the CTU, the notation “1” in the quadtree 

indicates further splitting and “0” indicates leaf node. A CU can be further split into multiple 

prediction units (PU) for inter or intra prediction. In intra coding, the PU partition type can be 

either PART_2Nx2N or PART_NxN, as shown in Fig. 2. However, PART_NxN is only 

allowed for the minimum CU size, otherwise it is similar as four equal-size sub-CUs.     

64x64

32x32

16x16

8x8

1

01

1 1

0 1

0 0 0 0 0 0

(a) (b)

CU size

 
Fig. 1. Example of a 64x64 CTU and its CU partition and processing order.  

(a) CU partitions (b) quadtree structure 

PART_2Nx2N PART_NxN

 
Fig. 2. PU types for intra prediction 
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During the transform and quantization process, a CU can also be recursively split into a 

quadtree of transform unit (TU). The intra prediction is applied for each TU sequentially 

instead of applying the intra prediction at the PU level [2]. In this way, the nearest neighboring 

reference samples from the already reconstructed TU are used for prediction. The HEVC 

defines 35 intra prediction modes, namley Intra_DC, Intra_Planar and 33 angular prediction 

modes denoded as Intra_Angular[k], k = 2,...,34. In comparison with H.264/AVC, the intra 

prediction modes defined in HEVC are able to capture more directional structures.  

 In the HEVC test mode (HM), a rate-distortion (RD) optimized bottom-up pruning 

algorithm [3] is adopted to find the best CU partition of a CTU. Given a CU, the best PU 

partition type, prediction mode and TU partition are found by minimizing the Lagrangian cost. 

While the flexible block structure and more choices of prediction mode provide better coding 

performance, it dramatically increases the encoder complexity. Even for intraframe coding, it 

is still far away from real-time application [4]. The computational complexity mainly comes 

from two folds. First, an optimal CU partition within a CTU can consist of various sizes of CU 

ranging from 8x8 to 64x64. Second, finding an optimal prediction mode requires a RD 

optimization process. Therefore, fast algorithms in both aspects are desirable. Research works 

regarding fast CU size decision include [5-8]; works targeting fast intra mode decision include 

[9-15]. In our previous work [16], a novel fast bottom-up pruning (FBUP) algorithm was 

proposed and proved to be efficient. In this paper, three techniques are proposed for fast intra 

mode decision and combined with the FBUP algorithm. Starting from the smallest CU size, a 

full quadtree is processed in a bottom-up manner. First, we check whether mode decision 

process is needed for a current CU node. If the mode decision process is performed, then a set 

of intra candidate modes are derived from the coding information obtained from its sub-blocks 

(sub-CUs or PART_NXN PUs), followed by a rough decision process to choose a smaller set 

of candidates. The number of candidates in the set is adaptively chosen based on the low 

complexity RD cost. In this way, we can either skip the mode decision process or reduce the 

number of candidate modes. Thus, the computational complexity is reduced.  

In Section 2, the previous works in the literature are reviewed. Then the proposed method is 

described in Section 3. In Section 4, the experimental results are presented to prove the 

efficiency of the proposed algorithm. Compared to the original HM encoder, averaging over 

all the test sequences and rate points, 41.39% encoding time saving is achieved while the 

bitrate increase is only 0.77%. Finally, the conclusion is given in Section 5. 

2. Related Works 

2.1 Rate-Distortion Optimized Bottom-up Pruning 

In HEVC, the CTU size is 64x64 and the maximum number of depth levels of the quadtree 

is 4D . The HM encoder  adopts the rate-distortion optimized bottom-up pruning algorithm 

to obtain the optimal CU quadtree partition. Consider the full quadtree as shown in Fig. 3, we 

locate a node by its depth level from top to bottom and its position from left to right. Let ),( ji  

be the index of j th node at depth level i , then 
ij 4 . Denote jiX ,  as a CU at node ),( ji  

without further splitting and jiC ,  as the optimal tree after rate-distortion optimized pruning. 

Let )(J  be the operation to calculate the best RD cost. The bottom-up pruning algorithm 
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traverses the full quadtree in a depth-first order. The sub-CUs of node ),( ji  is pruned if and 

only if 



3

0

4,1, )()(
k

kjiji CJXJ .  

 
Fig. 3. Full quadtree 

2.2 Fast Intra Mode Decision Algorithm in HM 

Full RD optimized search in the 35 intra prediction modes is computational complex. To 

reduce the encoder complexity, the HM encoder adopts a fast intra mode decision algorithm, 

which consists of two steps described as follows.  

1. Rough mode decision: choose the N best candidate modes by minimizing 

eSATDSATD RDJ mod . 

2.  Given the N candidate modes in step 1 and the most probable modes (MPM) derived 

from neighboring PUs, do R-D optimized mode decision. The best intra mode is found by 

minimizing totalrecfullRD RDJ  .  

SATDD is the Sum of Absolute Transformed Difference (SATD) which calculates the sum 

of abolute value of hadamard transformed coefficients of the residual signal, eRmod is the 

number of bits to encode mode information, recD is the distortion of the reconstructed block, 

totalR  is the total number of bits to encode current block and  is the Lagrangian multiplier. 

Calculation of SATDJ doesn't require the DCT transform, quantization and entropy coding 

process, thus it’s much simpler than calculation of the full RD cost fullRDJ . Therefore, the 

computational complexity can be reduced if N is set to a smaller value. In the HM encoder N is 

set to 3, 3, 3, 8 and 8 for the PU sizes of 6464 , 3232 , 1616 , 88 and 

44 respectively.   

3. Proposed Methods 

3.1 Fast bottom-up Pruning Algorithm 

3.1.1 Analysis of Bottom-up Pruning Algorithm 

The bottom-up pruning algorithm performs mode decision at each node of the full quadtree. 

Therefore, a total of 




1

0
4

D

i

i
 mode decisions for each CTU.  However, given a CU at 
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node ),( ji , the best partition and prediction modes of its sub-CUs 3,2,1,0,4,1  kC kji are 

known. Thus, we can reuse the coding information in sub-CUs to check whether mode 

decision at current node is necessary.   

Table 1. The probability ))(|)()((
3

0 4,1,,0 nCQCJXJPp
k kjijiji      

i n=0 n=1 n=2 n=3 n=4 

0 0.97 0.98 0.99 1.00 1.00 

1 0.49 0.76 0.88 0.95 0.98 

2 0.33 0.69 0.86 0.92 0.97 

 

 
Fig. 4. Example of a pruned quadtree. 

Let 0)( Q  indicates a leaf node and 1)( Q  denotes a tree. Then 

1)( 4,1  kjiCQ suggests that the strutural information in the k th sub-CU is complex. Hence, 

the current node is likely to be split. In Table 1, it shows the probability 0p  of a node is split 

when nCQ
k kji   

3

0 4,1 )( , i.e. ))(|)()((
3

0 4,1,,0 nCQCJXJPp
k kjijiji     .  The 

results are obtained by coding the first second (50 frames) of HEVC test sequence 

BasketballDrill. Similar statistics are found in coding the other sequences. Note that at level 3, 

it reaches the leaf node of the quadtree, thus the CU doesn’t have any sub-CUs. However, 

HEVC allows PART_NxN type PU at the bottom level, in which the CU can also be 

considered as a tree.  

3.1.2 Fast bottom-up Pruning Algorithm 

Based on the above observations, we can conclude that there is a high probability that a CU 

remains split if its sub-CUs are sub-trees. In other words, lots of mode decision process in a 

large CU is unnecessary. Therefore, they could be avoided to decrease the computational 

complexity.  In this paper, 1)(
3

0 4,1    iCQ
k kji  is set as the necessary condition to skip 

the intra mode decision process at node ),( ji . An example is shown in Fig. 4. If 1,1C  is a tree, 

then the sub-CUs of node 0,0C  are not pruned. Implementation details of the proposed fast 

bottom-up pruning algorithmis is described by the pseudocode in Algorithm 1. 
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Algorithm 1 Fast bottom-up pruning algorithm 

Function  ModeDecision( jiX , , jiC ,  ) 

     if 1 Di  then 

          Generate sub-CUs 3,2,1,0,4,1  kX kji  

          for 30k  do 

               ModeDecision( 
kji

X
 4,1

, kjiC  4,1  ) 

          end for 

          
3

0

4,1,




k

kjiji CC  





3

0

4,1, )()(
k

kjiji CJCJ  

end if 

if 1 Di or 1)(
3

0 4,1    iCQ
k kji then 

     Do intra mode decision and calculate )( , jiXJ  

     if 1 Di or )()( ,, jiji CJXJ   then 

         jiji XC ,,   

)()( ,, jiji XJCJ   

     end if 
end if 

end function 

3.1.2 Analysis of the Performance of Fast Bottom-up Pruning Algorithm 

To analyse the performance of the proposed FBUP algorithm, we can evaluate how often a 

node ),( ji is skipped by FBUP while its RD cost )( , jiXJ is actually less than )( , jiCJ , 

denoted as ))(|)()((
3

0 4,1,,1 nCQCJXJPp
k kjijiji      , and use 

%100
)(

)()(

,

,,





ji

jiji

XJ

XJCJ
J as a messure of loss in RD performance.  An example is 

shown in Table 2, in which the results are obtained by encoding the HEVC test sequence 

BasketballDrill. We can see that generally the values of 1p and J are small. Similar results 

are observed when coding other HEVC test sequences. It indicates that the probability of the 

proposed FBUP algorithm fails to predict the result of RD optimized mode decision is quite 

small, and the loss in RD performance is also trivial.  
Table 2. Analysis of the performance of proposed fast bottom-up pruning algorithm 

QP 

 

CU level 0 CU level 1 CU level 2 

1p (%) J (%) 
1p (%) J (%) 

1p (%) J (%) 

22 0.00 0.22 1.98 2.20 8.87 3.17 

27 0.06 0.50 7.09 2.97 9.17 4.14 

32 0.26 0.78 7.69 3.62 6.39 4.54 

37 3.00 3.52 5.82 4.87 6.24 3.68 
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3.2 Proposed Fast Intra Mode Decision Algorithm 

In this paper, three techniques are proposed for fast intra mode decision, namely, bottom-up 

prediction, adaptive intra mode filtering, and DC and Planar early decision.  

3.2.1 Bottom-up Prediction 

In the proposed FBUP algorithm, mode decision at a CU node is selectively skipped based 

on the coding information of its sub-CUs. Similarly, we can also predict the intra mode of 

current CU node if it’s not skipped.  An example is shown in Fig. 5, in which the red arrows 

indicate the intra prediction directions. The intra prediction mode of the block is the same as 

the prediction modes of its two sub-blocks.  

 
Fig. 5. Example of bottom-up prediction. 

The straightforward way of bottom-up prediction is to use the chosen best modes of sub-CUs,  

instead of all 35 modes, as the candidate modes for the parent CU. Though the number of candidate 

modes can be largely reduced by such method, however, we find that the coding efficiency is decreased 

significantly.  Therefore, a more robust scheme is required. In this paper, the rough mode decision 

results of sub-CUs are employed to select the candidate modes for parent CU. Let ji, be the set of 

candidate modes of a CU at node ),( ji and kji  4,1 be the set of N modes chosen in the rough 

mode decision process of its k th sub-CU, then kjikji   4,1

3

0,  . By using the N modes 

that are chosen by rough mode decision instead of only one mode, prediction from sub-CUs 

becomes more robust. On the other hand, N is usually a small number, so it can achieve a good 

tradeoff between coding efficiency and encoder complexity.  

3.2.2 Adaptive Intra Mode Filtering 

In the fast intra mode decision algorithm in HM, the number N is set to a fixed value. In this paper, an 

adaptive method is proposed based on the SATDJ costs in the rough mode decision process.  

1. For each mode in candidate set  , calculate its cost SATDJ , sort the candidate set in the 

ascending order of SATDJ .  

2. Let 7,...,1,0, iCandi be the first 8 modes after sorting, calculate the mean value of their 

cost, denoted as  


7

0
)(

8

1
i iSATD CandJ . 

3. The new candidate set is obtained as }1&)(|{'  NiCandJCand iSATDi  . 
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3.2.3 DC and Planar Early Decision 

The intra mode in HEVC can be categorized into two classes: one is DC and Planar modes, the other 

is directional intra prediction mode.  The DC and Planar modes are designed for smooth area, and the 

directional modes are designed for coding blocks that have directional edges.  It’s assumed that the 

rough mode decision process can effectively distinguish these two classes. So, in this paper, if the best 

mode in rough mode decision process is Planar or DC mode, then the directional modes are removed 

from the candidate set.  

3.2.4 The Overall Algorithm 

The three techniques described in the previous subsections can be combined. Similar to the original 

intra mode decision algorithm in HM, the most probable modes (MPM) derived from neighboring 

coded blocks are also included in the final candidate set for RD optimized mode decision. The overall 

algorithm is as follows: 

1. For a CU at node ),( ji , the set of candidate intra modes is kjikji   4,1

3

0,   

2. Calculate SATDJ for each candidate mode in ji, , sort the candidate modes in the 

decending order of SATDJ and denoted as 1,,1,0,  MiCandi   

3. If 0Cand equals to 0 or 1, i.e. Planar or DC mode, then )2(1 1  Candm and go to 

step 6, else 8m  

4. Calculate  


7

0
)(

8

1
i iSATD CandJ  

5. For 0,,7 i , if )( iSATD CandJ then 1mm  

6. }{}1,,0,{, MPMmiCandiji   , search the best mode in ji , by RD optimized 

mode decision as described in section 2.2.  

4. Experimental Results 

The proposed algorithm was evaluated in the HEVC reference software HM8.2 [17]. The main 

profile intra-only encoder configuration in the common test condition [18] is used to code the HEVC 

test sequences in classes A to E. The maximum CU size (CTU size) is 64x64, the maximum number of 

CU depth levels is 4, and maximum number of TU levels is 3. Rate-distortion optimized quantization, 

sample adaptive offset, transform skipping, and fast transform skipping are on. Four quantization 

parameters (QP) {22, 27, 32, and 37} are used to encode each sequence.  

To demonstrate the encoding time saving (ETS) of the proposed method, an isolated PC with Intel 

Core 2 3.0GHz CPU and 2.0GB RAM was used to encode the first second of each sequence. Compared 

with the original fast intra mode decision algorithm in HM8.2 encoder, the ETS, in percentages, and the 

corresponding BD-rate [19] for the proposed fast intra mode decision algorithm are shown in Table 3. 

Averaging over all test sequences, the ETS for different QP settings are around 25% and the Y BD-rate 

is only 0.40%. It’s also observed that the ETS is consistent for different test sequences and the 

maximum Y BD-rate is 0.70%. Thus, we can conclude that the proposed fast intra mode decision 

algorithm can efficiently reduce the encoder complexity without significant loss in rate-distortion 

performance. When the proposed fast intra mode decision algorithm is combined with the FBUP 

algorithm, the results are shown in Table 4. It shows that the combined algorithm can further reduce 

the encoder complexity. Averaging over all test sequences, the ETS for different QP settings are around 

40% and the Y BD-rate is 0.77%.  The maximum average bitrate increase is only 1.05%. Thus, the 

overall algorithm also does not compromise the RD performance.  
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Table 3. Encoding time saving (%) and corresponding Y BD-rate (%) of the proposed fast intra mode 

decision algorithm. 

Sequence 
Encoding time saving (%) Y BD-rate 

(%) QP=22 QP=27 QP=32 QP=37 

Class A 

2560x1600 

Traffic 23.88 24.29 25.81 27.46 0.40 

PeopleOnStreet 23.78 24.65 25.05 27.51 0.38 

NebutaFestival 23.61 24.39 25.79 25.02 0.10 

SteamLocomotive 26.65 26.85 27.91 29.04 0.07 

Average 24.23 25.05 26.14 27.26 0.24 

Class B 

1920x1080 

Kimono 24.86 24.54 26.08 28.08 0.13 

ParkScene 23.89 24.80 26.98 30.49 0.28 

Cactus 24.25 23.32 25.33 25.95 0.42 

BQTerrace 23.10 24.25 24.69 25.57 0.34 

BasketballDrive 24.91 23.20 26.12 29.67 0.30 

Average 24.20 24.02 25.84 27.95 0.29 

Class C 

832x480 

RaceHorses 21.76 25.49 25.06 26.02 0.33 

BQMall 24.62 24.30 24.58 24.46 0.56 

PartyScene 21.11 22.59 25.77 25.18 0.68 

BasketballDrill 24.43 23.40 24.06 21.13 0.41 

Average 22.73 23.95 24.87 24.25 0.50 

Class D 

416x240 

RaceHorses 23.17 22.10 22.15 26.70 0.48 

BQSquare 21.91 23.25 23.02 22.49 0.70 

BlowingBubbles 28.30 23.12 23.91 24.58 0.58 

BaseketballPass 24.48 23.60 24.57 25.84 0.55 

Average 24.46 23.02 23.41 24.90 0.58 

Class E 

1280x720 

FourPeople 23.74 24.48 25.70 26.02 0.41 

Johnny 25.29 28.23 26.89 30.55 0.45 

KristenAndSara 24.32 25.55 26.56 27.39 0.44 

Average 24.45 26.09 26.38 27.99 0.44 

Total Average 24.00 24.32 25.30 26.47 0.40 

 

Table 4. Encoding time saving (%) and corresponding Y BD-rate (%) of the proposed fast intra mode 

decision algorithm combined with the FBUP algorithm. 

Sequence 
Encoding time saving (%) Y BD-rate 

(%) QP=22 QP=27 QP=32 QP=37 

Class A 

2560x1600 

Traffic 43.57 41.83 38.55 38.92 0.87 

PeopleOnStreet 44.61 42.54 41.66 39.86 0.74 

NebutaFestival 31.27 31.32 35.56 36.19 0.45 

SteamLocomotive 35.51 33.31 36.59 37.61 1.01 

Average 38.74 37.25 38.04 38.14 0.77 

Class B 

1920x1080 

Kimono 33.61 30.44 30.75 31.29 0.55 

ParkScene 45.92 42.65 40.17 39.44 0.91 

Cactus 45.07 42.48 40.08 36.79 0.88 

BQTerrace 45.10 43.07 42.76 39.66 0.63 

BasketballDrive 37.65 35.74 32.27 36.58 0.71 

Average 41.47 38.87 37.21 36.75 0.74 

Class C 

832x480 

RaceHorses 45.89 45.71 42.42 41.86 0.71 

BQMall 49.50 46.60 43.86 39.83 0.81 

PartyScene 53.78 52.56 49.56 47.51 0.75 

BasketballDrill 50.00 46.60 42.87 39.38 0.84 
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Average 49.79 47.87 44.68 42.14 0.78 

Class D 

416x240 

RaceHorses 46.97 45.09 43.89 43.45 0.71 

BQSquare 54.46 52.69 50.98 48.47 0.74 

BlowingBubbles 53.81 46.75 43.36 38.90 0.71 

BaseketballPass 45.57 40.33 39.53 35.76 0.94 

Average 50.20 46.22 44.44 41.65 0.77 

Class E 

1280x720 

FourPeople 42.84 41.19 40.17 38.07 0.76 

Johnny 39.68 37.95 36.36 38.17 1.05 

KristenAndSara 38.60 36.45 37.09 36.45 0.71 

Average 40.37 38.53 37.88 37.57 0.84 

Total Average 44.17 41.76 40.41 39.21 0.77 

 

5. Conclusion 

In this paper, a fast intra mode decision algorithm is proposed for HEVC intraframe coding. The 

proposed algorithm consists of three techniques to reduce the number of candidate modes for RD 

optimized mode decision.  Compared to the original fast intra mode decision algorithm in HM encoder, 

the proposed algorithm can achieve about 25% encoding time saving with only 0.40% bitrate increase. 

Also, the proposed fast intra mode decision algorithm can be well combined with the proposed fast 

bottom-up pruning algorithm.  The encoder complexity is further reduced, about 41% encoding time 

savings are achieved, and the average bitrate increase is only 0.77%.   
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