• Title/Summary/Keyword: Internet Model

Search Result 5,470, Processing Time 0.034 seconds

Semantic Visualization of Dynamic Topic Modeling (다이내믹 토픽 모델링의 의미적 시각화 방법론)

  • Yeon, Jinwook;Boo, Hyunkyung;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.131-154
    • /
    • 2022
  • Recently, researches on unstructured data analysis have been actively conducted with the development of information and communication technology. In particular, topic modeling is a representative technique for discovering core topics from massive text data. In the early stages of topic modeling, most studies focused only on topic discovery. As the topic modeling field matured, studies on the change of the topic according to the change of time began to be carried out. Accordingly, interest in dynamic topic modeling that handle changes in keywords constituting the topic is also increasing. Dynamic topic modeling identifies major topics from the data of the initial period and manages the change and flow of topics in a way that utilizes topic information of the previous period to derive further topics in subsequent periods. However, it is very difficult to understand and interpret the results of dynamic topic modeling. The results of traditional dynamic topic modeling simply reveal changes in keywords and their rankings. However, this information is insufficient to represent how the meaning of the topic has changed. Therefore, in this study, we propose a method to visualize topics by period by reflecting the meaning of keywords in each topic. In addition, we propose a method that can intuitively interpret changes in topics and relationships between or among topics. The detailed method of visualizing topics by period is as follows. In the first step, dynamic topic modeling is implemented to derive the top keywords of each period and their weight from text data. In the second step, we derive vectors of top keywords of each topic from the pre-trained word embedding model. Then, we perform dimension reduction for the extracted vectors. Then, we formulate a semantic vector of each topic by calculating weight sum of keywords in each vector using topic weight of each keyword. In the third step, we visualize the semantic vector of each topic using matplotlib, and analyze the relationship between or among the topics based on the visualized result. The change of topic can be interpreted in the following manners. From the result of dynamic topic modeling, we identify rising top 5 keywords and descending top 5 keywords for each period to show the change of the topic. Existing many topic visualization studies usually visualize keywords of each topic, but our approach proposed in this study differs from previous studies in that it attempts to visualize each topic itself. To evaluate the practical applicability of the proposed methodology, we performed an experiment on 1,847 abstracts of artificial intelligence-related papers. The experiment was performed by dividing abstracts of artificial intelligence-related papers into three periods (2016-2017, 2018-2019, 2020-2021). We selected seven topics based on the consistency score, and utilized the pre-trained word embedding model of Word2vec trained with 'Wikipedia', an Internet encyclopedia. Based on the proposed methodology, we generated a semantic vector for each topic. Through this, by reflecting the meaning of keywords, we visualized and interpreted the themes by period. Through these experiments, we confirmed that the rising and descending of the topic weight of a keyword can be usefully used to interpret the semantic change of the corresponding topic and to grasp the relationship among topics. In this study, to overcome the limitations of dynamic topic modeling results, we used word embedding and dimension reduction techniques to visualize topics by era. The results of this study are meaningful in that they broadened the scope of topic understanding through the visualization of dynamic topic modeling results. In addition, the academic contribution can be acknowledged in that it laid the foundation for follow-up studies using various word embeddings and dimensionality reduction techniques to improve the performance of the proposed methodology.

Mediating Roles of Attachment for Information Sharing in Social Media: Social Capital Theory Perspective (소셜 미디어에서 정보공유를 위한 애착의 매개역할: 사회적 자본이론 관점)

  • Chung, Namho;Han, Hee Jeong;Koo, Chulmo
    • Asia pacific journal of information systems
    • /
    • v.22 no.4
    • /
    • pp.101-123
    • /
    • 2012
  • Currently, Social Media, it has widely a renown keyword and its related social trends and businesses have been fastly applied into various contexts. Social media has become an important research area for scholars interested in online technologies and cyber space and their social impacts. Social media is not only including web-based services but also mobile-based application services that allow people to share various style information and knowledge through online connection. Social media users have tendency to common identity- and bond-attachment through interactions such as 'thumbs up', 'reply note', 'forwarding', which may have driven from various factors and may result in delivering information, sharing knowledge, and specific experiences et al. Even further, almost of all social media sites provide and connect unknown strangers depending on shared interests, political views, or enjoyable activities, and other stuffs incorporating the creation of contents, which provides benefits to users. As fast developing digital devices including smartphone, tablet PC, internet based blogging, and photo and video clips, scholars desperately have began to study regarding diverse issues connecting human beings' motivations and the behavioral results which may be articulated by the format of antecedents as well as consequences related to contents that people create via social media. Social media such as Facebook, Twitter, or Cyworld users are more and more getting close each other and build up their relationships by a different style. In this sense, people use social media as tools for maintain pre-existing network, creating new people socially, and at the same time, explicitly find some business opportunities using personal and unlimited public networks. In terms of theory in explaining this phenomenon, social capital is a concept that describes the benefits one receives from one's relationship with others. Thereby, social media use is closely related to the form and connected of people, which is a bridge that can be able to achieve informational benefits of a heterogeneous network of people and common identity- and bonding-attachment which emphasizes emotional benefits from community members or friend group. Social capital would be resources accumulated through the relationships among people, which can be considered as an investment in social relations with expected returns and may achieve benefits from the greater access to and use of resources embedded in social networks. Social media using for their social capital has vastly been adopted in a cyber world, however, there has been little explaining the phenomenon theoretically how people may take advantages or opportunities through interaction among people, why people may interactively give willingness to help or their answers. The individual consciously express themselves in an online space, so called, common identity- or bonding-attachments. Common-identity attachment is the focus of the weak ties, which are loose connections between individuals who may provide useful information or new perspectives for one another but typically not emotional support, whereas common-bonding attachment is explained that between individuals in tightly-knit, emotionally close relationship such as family and close friends. The common identify- and bonding-attachment are mainly studying on-offline setting, which individual convey an impression to others that are expressed to own interest to others. Thus, individuals expect to meet other people and are trying to behave self-presentation engaging in opposite partners accordingly. As developing social media, individuals are motivated to disclose self-disclosures of open and honest using diverse cues such as verbal and nonverbal and pictorial and video files to their friends as well as passing strangers. Social media context, common identity- and bond-attachment for self-presentation seems different compared with face-to-face context. In the realm of social media, social users look for self-impression by posting text messages, pictures, video files. Under the digital environments, people interact to work, shop, learn, entertain, and be played. Social media provides increasingly the kinds of intention and behavior in online. Typically, identity and bond social capital through self-presentation is the intentional and tangible component of identity. At social media, people try to engage in others via a desired impression, which can maintain through performing coherent and complementary communications including displaying signs, symbols, brands made of digital stuffs(information, interest, pictures, etc,). In marketing area, consumers traditionally show common-identity as they select clothes, hairstyles, automobiles, logos, and so on, to impress others in any given context in a shopping mall or opera. To examine these social capital and attachment, we combined a social capital theory with an attachment theory into our research model. Our research model focuses on the common identity- and bond-attachment how they are formulated through social capitals: cognitive capital, structural capital, relational capital, and individual characteristics. Thus, we examined that individual online kindness, self-rated expertise, and social relation influence to build common identity- and bond-attachment, and the attachment effects make an impact on both the willingness to help, however, common bond seems not to show directly impact on information sharing. As a result, we discover that the social capital and attachment theories are mainly applicable to the context of social media and usage in the individual networks. We collected sample data of 256 who are using social media such as Facebook, Twitter, and Cyworld and analyzed the suggested hypotheses through the Structural Equation Model by AMOS. This study analyzes the direct and indirect relationship between the social network service usage and outcomes. Antecedents of kindness, confidence of knowledge, social relations are significantly affected to the mediators common identity-and bond attachments, however, interestingly, network externality does not impact, which we assumed that a size of network was a negative because group members would not significantly contribute if the members do not intend to actively interact with each other. The mediating variables had a positive effect on toward willingness to help. Further, common identity attachment has stronger significant on shared information.

  • PDF

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

A Study on Market Expansion Strategy via Two-Stage Customer Pre-segmentation Based on Customer Innovativeness and Value Orientation (고객혁신성과 가치지향성 기반의 2단계 사전 고객세분화를 통한 시장 확산 전략)

  • Heo, Tae-Young;Yoo, Young-Sang;Kim, Young-Myoung
    • Journal of Korea Technology Innovation Society
    • /
    • v.10 no.1
    • /
    • pp.73-97
    • /
    • 2007
  • R&D into future technologies should be conducted in conjunction with technological innovation strategies that are linked to corporate survival within a framework of information and knowledge-based competitiveness. As such, future technology strategies should be ensured through open R&D organizations. The development of future technologies should not be conducted simply on the basis of future forecasts, but should take into account customer needs in advance and reflect them in the development of the future technologies or services. This research aims to select as segmentation variables the customers' attitude towards accepting future telecommunication technologies and their value orientation in their everyday life, as these factors wilt have the greatest effect on the demand for future telecommunication services and thus segment the future telecom service market. Likewise, such research seeks to segment the market from the stage of technology R&D activities and employ the results to formulate technology development strategies. Based on the customer attitude towards accepting new technologies, two groups were induced, and a hierarchical customer segmentation model was provided to conduct secondary segmentation of the two groups on the basis of their respective customer value orientation. A survey was conducted in June 2006 on 800 consumers aged 15 to 69, residing in Seoul and five other major South Korean cities, through one-on-one interviews. The samples were divided into two sub-groups according to their level of acceptance of new technology; a sub-group demonstrating a high level of technology acceptance (39.4%) and another sub-group with a comparatively lower level of technology acceptance (60.6%). These two sub-groups were further divided each into 5 smaller sub-groups (10 total smaller sub-groups) through two rounds of segmentation. The ten sub-groups were then analyzed in their detailed characteristics, including general demographic characteristics, usage patterns in existing telecom services such as mobile service, broadband internet and wireless internet and the status of ownership of a computing or information device and the desire or intention to purchase one. Through these steps, we were able to statistically prove that each of these 10 sub-groups responded to telecom services as independent markets. We found that each segmented group responds as an independent individual market. Through correspondence analysis, the target segmentation groups were positioned in such a way as to facilitate the entry of future telecommunication services into the market, as well as their diffusion and transferability.

  • PDF

Product Community Analysis Using Opinion Mining and Network Analysis: Movie Performance Prediction Case (오피니언 마이닝과 네트워크 분석을 활용한 상품 커뮤니티 분석: 영화 흥행성과 예측 사례)

  • Jin, Yu;Kim, Jungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.49-65
    • /
    • 2014
  • Word of Mouth (WOM) is a behavior used by consumers to transfer or communicate their product or service experience to other consumers. Due to the popularity of social media such as Facebook, Twitter, blogs, and online communities, electronic WOM (e-WOM) has become important to the success of products or services. As a result, most enterprises pay close attention to e-WOM for their products or services. This is especially important for movies, as these are experiential products. This paper aims to identify the network factors of an online movie community that impact box office revenue using social network analysis. In addition to traditional WOM factors (volume and valence of WOM), network centrality measures of the online community are included as influential factors in box office revenue. Based on previous research results, we develop five hypotheses on the relationships between potential influential factors (WOM volume, WOM valence, degree centrality, betweenness centrality, closeness centrality) and box office revenue. The first hypothesis is that the accumulated volume of WOM in online product communities is positively related to the total revenue of movies. The second hypothesis is that the accumulated valence of WOM in online product communities is positively related to the total revenue of movies. The third hypothesis is that the average of degree centralities of reviewers in online product communities is positively related to the total revenue of movies. The fourth hypothesis is that the average of betweenness centralities of reviewers in online product communities is positively related to the total revenue of movies. The fifth hypothesis is that the average of betweenness centralities of reviewers in online product communities is positively related to the total revenue of movies. To verify our research model, we collect movie review data from the Internet Movie Database (IMDb), which is a representative online movie community, and movie revenue data from the Box-Office-Mojo website. The movies in this analysis include weekly top-10 movies from September 1, 2012, to September 1, 2013, with in total. We collect movie metadata such as screening periods and user ratings; and community data in IMDb including reviewer identification, review content, review times, responder identification, reply content, reply times, and reply relationships. For the same period, the revenue data from Box-Office-Mojo is collected on a weekly basis. Movie community networks are constructed based on reply relationships between reviewers. Using a social network analysis tool, NodeXL, we calculate the averages of three centralities including degree, betweenness, and closeness centrality for each movie. Correlation analysis of focal variables and the dependent variable (final revenue) shows that three centrality measures are highly correlated, prompting us to perform multiple regressions separately with each centrality measure. Consistent with previous research results, our regression analysis results show that the volume and valence of WOM are positively related to the final box office revenue of movies. Moreover, the averages of betweenness centralities from initial community networks impact the final movie revenues. However, both of the averages of degree centralities and closeness centralities do not influence final movie performance. Based on the regression results, three hypotheses, 1, 2, and 4, are accepted, and two hypotheses, 3 and 5, are rejected. This study tries to link the network structure of e-WOM on online product communities with the product's performance. Based on the analysis of a real online movie community, the results show that online community network structures can work as a predictor of movie performance. The results show that the betweenness centralities of the reviewer community are critical for the prediction of movie performance. However, degree centralities and closeness centralities do not influence movie performance. As future research topics, similar analyses are required for other product categories such as electronic goods and online content to generalize the study results.

The Effect of the Gap between College Students' Perception of the Importance of Coffee Shops and Their Satisfaction after Patronizing Coffee Shops on Their Purchasing Behavior (대전원교학생대가배점중요성적감지화타문광고가배점지후적만의도지간적차거대타문구매행위적영향(大专院校学生对咖啡店重要性的感知和他们光顾咖啡店之后的满意度之间的差距对他们购买行为的影响))

  • Lee, Won-Ok
    • Journal of Global Scholars of Marketing Science
    • /
    • v.19 no.4
    • /
    • pp.1-10
    • /
    • 2009
  • The purpose of this study was to categorize the gap between coffee shop 'importance' (as perceived by customers before patronizing the coffee shop) and 'satisfaction' (perception of customers after patronizing the coffee shop) as positive or negative and to analyze the effect of these gaps on purchasing behavior. To do this, I used the gap between importance and satisfaction regarding the choice of a coffee shop as the explanatory variable and performed an empirical analysis of the direction and size of the effect of the gap on purchasing behavior (overall satisfaction, willingness-to-revisit) by applying the Ordered Probit Model (OPM). A previous study that used IPA to evaluate the effects of gaps estimated the direction and size of a quadrant but failed to analyze the effect of gaps on customers. In this study, I evaluated the effects of positive and negative gaps on customer satisfaction and willingness-to-revisit. Using OPM, I quantified the effect of positive and negative gaps on overall customer satisfaction and willingness-to-revisit. Per-head expenditure, frequency of visits, and coffee-purchasing place had the most positive effects on overall customer satisfaction. Frequency of visits, followed by per-head expenditure and then coffee-purchasing place, had the most positive impact on willingness-to-visit. Thus per-head expenditure and frequency of visits had the greatest positive effects on overall satisfaction and willingness-to-revisit. This finding implies that the higher the actual satisfaction (gap) of customers who spend KRW5,000 or more once or more per week at coffee shops is, the higher their overall satisfaction and willingness-to-revisit are. Despite the fact that economical efficiency had a significant effect on overall satisfaction and willingness-to-revisit, college and university students still use coffee shops and are willing to spend KRW5,000 because they do not only purchase coffee as a product itself, but use the coffee shop for other activities, such as working, meeting friends, or relaxing. College and university students also access the Internet in coffee shops via personal laptops, watch movies, and study; thus, coffee shops should provide their customers with the appropriate facilities and services. The fact that a positive gap for coffee shop brand had a positive effect on willingness-to-revisit implies that the higher the level of customer satisfaction, the greater the willingness-to-revisit. A negative gap for this factor, on the other hand, implies that the lower the level of customer satisfaction, the lower the willingness-to-revisit. Thus, the brand factor has a comparatively greater effect on satisfaction than the other factors evaluated in this study. Given that the domestic coffee culture is becoming more upscale and college/university students are sensitive to this trend, students are attentive to brands. In most upscale coffee shops in Korea, the outer wall is built out of glass that can be opened, the interiors are exotic with an open kitchen. These upscale coffee shops function as landmarks and match the taste of college/university students. Coffee shops in Korea have become a cultural brand. To make customers feel that coffee shops are upscale, good quality establishments and measures to provide better services in terms of brand factor should be instituted. The intensified competition among coffee shop brands in Korea as a result of the booming industry indicates that provision of additional services is needed to differentiate competitors. These customers can also use a scanner free of charge. Another strategy that can be used to boost brands could be to provide and operate a seminar room for seminars and group study. If coffee shops adopt these types of strategies, college/university students would be more likely to consider the expenses they incur worthwhile and, subsequently, they would be more likely to be satisfied with the brands of these coffee shops, with an associated increase in their willingness-to-revisit. Gender and study year had the most negative effects on overall satisfaction and willingness-to-revisit. Female students were more likely to be satisfied and be willing to return than male students, and third and fourth-year students were more likely to be satisfied and willing-to-return than first or second-year students. Students who drink coffee, read books, and use laptops alone at coffee shops are easily noticeable. High-grade students tend to visit coffee shops alone in order to use their time efficiently for self-development and to find jobs. The economical efficiency factor had the greatest effect on overall satisfaction and willingness-to-revisit in terms of a positive gap. The higher the actual satisfaction (gap) of students with the price of the coffee, the greater their overall satisfaction and willingness-to-revisit. Economical efficiency with a negative gap had a negative effect on willingness-to-revisit, which implies that a less negative gap will result in a greater willingness-to-revisit. Amid worsening market conditions, coffee shops located around colleges/universities are using strategies, such as a point or membership card, strategic alliances with credit-card companies, development of a set menu or seasonal menu, and free coffee-shot services to increase their competitive edge. Product power also had a negative effect in terms of a negative gap, which indicates that a higher negative gap will result in a lower willingness-to-revisit. Because there are many more customers that enjoy coffee in this decade, as compared to previous decades, the new generation of customers, namely college/university students, want various menu items in addition to coffee, and coffee shops should, therefore, add side menu items, such as waffles, rice cakes, cakes, sandwiches, and salads. For example, Starbucks Korea is making efforts to enhance product power by selling rice cakes flavored in strawberry, wormwood, and pumpkin, and providing coffee or cream free of charge. In summary, coffee shops should focus on increasing their economical efficiency, brand, and product power to enhance the satisfaction of college/university students. Because shops adjacent to colleges or universities enjoy a locational advantage, providing differentiated services in terms of economical efficiency, brand, and product power, is likely to increase customer satisfaction and return visits. Coffee shop brands should, therefore, be innovative and embrace change to meet their customers' desires. Because this study only targeted college/university students in Seoul, comparative studies targeting diverse regions and age groups are required to generalize the findings and recommendations of this study.

  • PDF

Intelligent VOC Analyzing System Using Opinion Mining (오피니언 마이닝을 이용한 지능형 VOC 분석시스템)

  • Kim, Yoosin;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.113-125
    • /
    • 2013
  • Every company wants to know customer's requirement and makes an effort to meet them. Cause that, communication between customer and company became core competition of business and that important is increasing continuously. There are several strategies to find customer's needs, but VOC (Voice of customer) is one of most powerful communication tools and VOC gathering by several channels as telephone, post, e-mail, website and so on is so meaningful. So, almost company is gathering VOC and operating VOC system. VOC is important not only to business organization but also public organization such as government, education institute, and medical center that should drive up public service quality and customer satisfaction. Accordingly, they make a VOC gathering and analyzing System and then use for making a new product and service, and upgrade. In recent years, innovations in internet and ICT have made diverse channels such as SNS, mobile, website and call-center to collect VOC data. Although a lot of VOC data is collected through diverse channel, the proper utilization is still difficult. It is because the VOC data is made of very emotional contents by voice or text of informal style and the volume of the VOC data are so big. These unstructured big data make a difficult to store and analyze for use by human. So that, the organization need to automatic collecting, storing, classifying and analyzing system for unstructured big VOC data. This study propose an intelligent VOC analyzing system based on opinion mining to classify the unstructured VOC data automatically and determine the polarity as well as the type of VOC. And then, the basis of the VOC opinion analyzing system, called domain-oriented sentiment dictionary is created and corresponding stages are presented in detail. The experiment is conducted with 4,300 VOC data collected from a medical website to measure the effectiveness of the proposed system and utilized them to develop the sensitive data dictionary by determining the special sentiment vocabulary and their polarity value in a medical domain. Through the experiment, it comes out that positive terms such as "칭찬, 친절함, 감사, 무사히, 잘해, 감동, 미소" have high positive opinion value, and negative terms such as "퉁명, 뭡니까, 말하더군요, 무시하는" have strong negative opinion. These terms are in general use and the experiment result seems to be a high probability of opinion polarity. Furthermore, the accuracy of proposed VOC classification model has been compared and the highest classification accuracy of 77.8% is conformed at threshold with -0.50 of opinion classification of VOC. Through the proposed intelligent VOC analyzing system, the real time opinion classification and response priority of VOC can be predicted. Ultimately the positive effectiveness is expected to catch the customer complains at early stage and deal with it quickly with the lower number of staff to operate the VOC system. It can be made available human resource and time of customer service part. Above all, this study is new try to automatic analyzing the unstructured VOC data using opinion mining, and shows that the system could be used as variable to classify the positive or negative polarity of VOC opinion. It is expected to suggest practical framework of the VOC analysis to diverse use and the model can be used as real VOC analyzing system if it is implemented as system. Despite experiment results and expectation, this study has several limits. First of all, the sample data is only collected from a hospital web-site. It means that the sentimental dictionary made by sample data can be lean too much towards on that hospital and web-site. Therefore, next research has to take several channels such as call-center and SNS, and other domain like government, financial company, and education institute.

Impact of Semantic Characteristics on Perceived Helpfulness of Online Reviews (온라인 상품평의 내용적 특성이 소비자의 인지된 유용성에 미치는 영향)

  • Park, Yoon-Joo;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.29-44
    • /
    • 2017
  • In Internet commerce, consumers are heavily influenced by product reviews written by other users who have already purchased the product. However, as the product reviews accumulate, it takes a lot of time and effort for consumers to individually check the massive number of product reviews. Moreover, product reviews that are written carelessly actually inconvenience consumers. Thus many online vendors provide mechanisms to identify reviews that customers perceive as most helpful (Cao et al. 2011; Mudambi and Schuff 2010). For example, some online retailers, such as Amazon.com and TripAdvisor, allow users to rate the helpfulness of each review, and use this feedback information to rank and re-order them. However, many reviews have only a few feedbacks or no feedback at all, thus making it hard to identify their helpfulness. Also, it takes time to accumulate feedbacks, thus the newly authored reviews do not have enough ones. For example, only 20% of the reviews in Amazon Review Dataset (Mcauley and Leskovec, 2013) have more than 5 reviews (Yan et al, 2014). The purpose of this study is to analyze the factors affecting the usefulness of online product reviews and to derive a forecasting model that selectively provides product reviews that can be helpful to consumers. In order to do this, we extracted the various linguistic, psychological, and perceptual elements included in product reviews by using text-mining techniques and identifying the determinants among these elements that affect the usability of product reviews. In particular, considering that the characteristics of the product reviews and determinants of usability for apparel products (which are experiential products) and electronic products (which are search goods) can differ, the characteristics of the product reviews were compared within each product group and the determinants were established for each. This study used 7,498 apparel product reviews and 106,962 electronic product reviews from Amazon.com. In order to understand a review text, we first extract linguistic and psychological characteristics from review texts such as a word count, the level of emotional tone and analytical thinking embedded in review text using widely adopted text analysis software LIWC (Linguistic Inquiry and Word Count). After then, we explore the descriptive statistics of review text for each category and statistically compare their differences using t-test. Lastly, we regression analysis using the data mining software RapidMiner to find out determinant factors. As a result of comparing and analyzing product review characteristics of electronic products and apparel products, it was found that reviewers used more words as well as longer sentences when writing product reviews for electronic products. As for the content characteristics of the product reviews, it was found that these reviews included many analytic words, carried more clout, and related to the cognitive processes (CogProc) more so than the apparel product reviews, in addition to including many words expressing negative emotions (NegEmo). On the other hand, the apparel product reviews included more personal, authentic, positive emotions (PosEmo) and perceptual processes (Percept) compared to the electronic product reviews. Next, we analyzed the determinants toward the usefulness of the product reviews between the two product groups. As a result, it was found that product reviews with high product ratings from reviewers in both product groups that were perceived as being useful contained a larger number of total words, many expressions involving perceptual processes, and fewer negative emotions. In addition, apparel product reviews with a large number of comparative expressions, a low expertise index, and concise content with fewer words in each sentence were perceived to be useful. In the case of electronic product reviews, those that were analytical with a high expertise index, along with containing many authentic expressions, cognitive processes, and positive emotions (PosEmo) were perceived to be useful. These findings are expected to help consumers effectively identify useful product reviews in the future.

Recent Trends of Immunologic Studies of Herbal Medicine on Rheumatoid Arthritis (류마티스 관절염에 대한 한약의 면역학적 연구동향)

  • Choi, Do-young;Lee, Jae-dong;Back, Yong-hyeon;Lee, Song-shil;Yoo, Myung-chul;Han, Chung-soo;Yang, Hyung-in;Park, Sang-do;Ryu, Mi-hyun;Park, Eun-kyung;Park, Dong-seok
    • Journal of Acupuncture Research
    • /
    • v.21 no.4
    • /
    • pp.177-196
    • /
    • 2004
  • Objective : Rheumatoid arthritis is an autoimmune disease that pathogenesis is not fully understood and one of the most intractable musculoskeletal diseases. The concern in the immunopathogenesis of rheumatoid arthritis has been increased since 1980's and many immunotherapeutic agents including disease-modifying antirheumatic drugs (DMARDs) were developed and became the mainstay of treatment of rheumatoid arthritis. However, the cure of the disease has hardly been achieved. In oriental medicine, rheumatoid arthritis is related to Bi-Zheng(痺證), that presents pain, swelling, andlor loss of joint function as major clinical manifestations, and also known to be deeply involved in suppression of immune function related to weakness of Jung-Ki(正氣). The herbal medicine, empirically used, could be a potential resource of development of new immunotherapeutic agents for rheumatoid arthritis. Methods : We developed a search strategy using terms to include "rheumatoid arthritis and herbal medicine" combined with "Chinese medicine" and/or "Oriental medicine". The search was focused on experimental studies of herbal medicine (January 1999 to May 2004), which is known to have effects on immune function of patients with rheumatoid arthritis. Computerized search used Internet databases including KISS and RISS4U (Korea), CNKI (China), MOMJ (Main Oriental Medicine Journal, Japan), and PubMed. The articles were selected from journals of universities or major research institutes. Results : The literature search for experimental studies on effects of herbal medicine on immunity of rheumatoid arthritis retrieved a total of 21 articles (Korea; 8, China ; 12, Japan ; 1). Of 21 articles, 10 were related to single-drug formula, 2 to drug interaction, and 9 to multi-drug formula. Single-drug formula was mainly used for aqua-acupuncture and researches on active components. Studies of drug interaction emphasized harmony of Ki-Hyul(氣血) and balance of Han-Yeul(寒熱). Multi-drug regimen was mainly found among formulas for Bo-Ki-Hyul(補氣血) and Bo-Sin(補腎). Conclusion : Studies on rheumatoid arthritis were performed both in vitro and in vivo in vitro study, LPS-stimulated splenocytes and synoviocytes were treated with herbal medicine, resulting in proliferation and activation of immune cells and suppression of cytokine activities in vivo study CIA animal model demonstrated that herbal medicine decreased antibody production and improved function of immune cells. In cellular and molecular study herbal medicine showed profound effects on the level of mRNA expression of certain cytokines related to immune function. This study revealed that herbal medicine has significant immune modulatory action and could be used for recovery of immune dysfunction of rheumatoid arthritis patients.

  • PDF

Application and Development of Teaching-Learning Plan for 'Sustainable Residence Created with Neighbor' ('이웃과 더불어 만드는 지속가능한 주거생활' 교수.학습 과정안 개발 및 적용)

  • Park, Mi-Ra;Cho, Jae-Soon
    • Journal of Korean Home Economics Education Association
    • /
    • v.22 no.3
    • /
    • pp.1-18
    • /
    • 2010
  • The purpose of this study was to develop a teaching-learning process plan for sustainable residing creating with neighbors and to apply it to the housing section of Technology-Home Economics according to the 2007 Revised Curriculum. Teachinglearning method solving practical problems was used for the teaching-learning process plans of 6-session lessons according to the ADDIE model. In the development stage, 17 activity materials and 15 teaching learning materials (6 reading texts, 6 moving pictures, 2 internet and 1 image materials) were developed. for the 6-session lessons, based on the stages of solving practical problems. The plans applied to the 3 classes of 8, 9, and 10th grade of the H. junior and senior high school in Myun district in Kyungbook during Sept. 1st to 14th, 2009. The results showed that students actively participated when the contents and materials were related to their own experience. The 6-session lessons about sustainable residing creating with neighbors was significantly increased the sense of community between before and after. Each of the 4 stages of the teachinglearning method solving practical problems were highly participated by the students. The satisfaction with the contents and methods of the 6-session lessons were evaluated over medium to somewhat higher levels. The practical activities to solve the community space and programs were got positive comments. Problem solving process and presentation and discussion were needed to learn more. Those results might support that the teachinglearning process plan this research developed. would be appropriate to the lessons for sustainable residing creating with neighbors.

  • PDF