• Title/Summary/Keyword: Internal organ motion

Search Result 26, Processing Time 0.036 seconds

Estimation of Internal Motion for Quantitative Improvement of Lung Tumor in Small Animal (소동물 폐종양의 정량적 개선을 위한 내부 움직임 평가)

  • Yu, Jung-Woo;Woo, Sang-Keun;Lee, Yong-Jin;Kim, Kyeong-Min;Kim, Jin-Su;Lee, Kyo-Chul;Park, Sang-Jun;Yu, Ran-Ji;Kang, Joo-Hyun;Ji, Young-Hoon;Chung, Yong-Hyun;Kim, Byung-Il;Lim, Sang-Moo
    • Progress in Medical Physics
    • /
    • v.22 no.3
    • /
    • pp.140-147
    • /
    • 2011
  • The purpose of this study was to estimate internal motion using molecular sieve for quantitative improvement of lung tumor and to localize lung tumor in the small animal PET image by evaluated data. Internal motion has been demonstrated in small animal lung region by molecular sieve contained radioactive substance. Molecular sieve for internal lung motion target was contained approximately 37 kBq Cu-64. The small animal PET images were obtained from Siemens Inveon scanner using external trigger system (BioVet). SD-Rat PET images were obtained at 60 min post injection of FDG 37 MBq/0.2 mL via tail vein for 20 min. Each line of response in the list-mode data was converted to sinogram gated frames (2~16 bin) by trigger signal obtained from BioVet. The sinogram data was reconstructed using OSEM 2D with 4 iterations. PET images were evaluated with count, SNR, FWHM from ROI drawn in the target region for quantitative tumor analysis. The size of molecular sieve motion target was $1.59{\times}2.50mm$. The reference motion target FWHM of vertical and horizontal was 2.91 mm and 1.43 mm, respectively. The vertical FWHM of static, 4 bin and 8 bin was 3.90 mm, 3.74 mm, and 3.16 mm, respectively. The horizontal FWHM of static, 4 bin and 8 bin was 2.21 mm, 2.06 mm, and 1.60 mm, respectively. Count of static, 4 bin, 8 bin, 12 bin and 16 bin was 4.10, 4.83, 5.59, 5.38, and 5.31, respectively. The SNR of static, 4 bin, 8 bin, 12 bin and 16 bin was 4.18, 4.05, 4.22, 3.89, and 3.58, respectively. The FWHM were improved in accordance with gate number increase. The count and SNR were not proportionately improve with gate number, but shown the highest value in specific bin number. We measured the optimal gate number what minimize the SNR loss and gain improved count when imaging lung tumor in small animal. The internal motion estimation provide localized tumor image and will be a useful method for organ motion prediction modeling without external motion monitoring system.

Development of RMRD and Moving Phantom for Radiotherapy in Moving Tumors

  • Lee, S.;Seong, Jin-Sil;Chu, Sung-Sil;Yoon, Won-Sup;Yang, Dae-Sik;Choi, Myung-Sun;Kim, Chul-Yong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.63-63
    • /
    • 2003
  • Purpose: Planning target volume (PTV) for tumors in abdomen or thorax includes enough margin for breathing-related movement of tumor volumes during treatment. We developed a simple and handy method, which can reduce PTV margins in patients with moving tumors, respiratory motion reduction device system (RMRDs). Materials and Methods: The patients clinical database was structured for moving tumor patients and patient setup error measurement and immobilization device effects were investigated. The system is composed of the respiratory motion reduction device utilized in prone position and abdominal presser (strip device) utilized in the supine position, moving phantom and the analysis program, which enables the analysis on patients setup reproducibility. It was tested for analyzing the diaphragm movement and CT volume differences from patients with RMRDs, the magnitude of PTV margin was determined and dose volume histogram (DVH) was computed using a treatment planning software. Dose to normal tissue between patients with RMRDs and without RMRDs was analyzed by comparing the fraction of the normal liver receiving to 50% of the isocenter dose(TD50). Results: In case of utilizing RMRDs, which was personally developed in our hospital, the value was reduced to $5pm1.4 mm$, and in case of which the belt immobilization device was utilized, the value was reduced to 3$pm$0.9 mm. Also in case of which the strip device was utilized, the value was proven to reduce to $4pm.3 mm$0. As a result of analyzing the TD50 is irradiated in DVH according to the radiation treatment planning, the usage of the respiratory motion reduction device can create the reduce of 30% to the maximum. Also by obtaining the digital image, the function of comparison between the standard image, automated external contour subtraction, and etc were utilized to develop patients setup reproducibility analysis program that can evaluate the change in the patients setup. Conclusion: Internal organ motion due to breathing can be reduced using RMRDs, which is simple and easy to use in clinical setting. It can reduce the organ motion-related PTV margin, thereby decrease volume of the irradiated normal tissue.

  • PDF

Evaluation of Difference between Skin Motion and Tumor Motion for Respiration Gated Radiotherapy (호흡조절방사선치료를 위한 피부움직임과 종양움직임 차이 평가)

  • Kwon, Kyung-Tae;Lim, Sang-Wook;Park, Sung-Ho;Kwon, Soo-Il;Shin, Sung-Soo;Lee, Sang-Wook;Ahn, Seung-Do;Kim, Jong-Hoon;Choi, Eun-Kyung
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.14-20
    • /
    • 2008
  • Accounting for tumor motion in treatment planning and delivery is one of the most recent and significant challenges facing radiotherapy. The purpose of this study was to investigate the correlation and clarified the relationship between the motion of an external marker using the Real-Time Position Management (RPM) System and an internal organ motion signal obtained fluoroscope. We enrolled 10 patients with locally advanced lung cancer and liver cancer, retrospectively. The external marker was a plastic box, which is part of the RPM used to track the patient's respiration. We investigated the quantitatively correlation between the motions of an external marker with RPM and internal motion with fluoroscope. The internal fiducial motion is predominant in the caraniocaudal direction, with a range of $1.3{\sim}3.5cm$ with fluoroscopic unit. The external fiducial motion is predominant in the caraniocaudal direction, with a range of $0.43{\sim}2.19cm$ with RPM gating. The two measurements ratio is from 1.31 to 5.56. When the regularization guided standard deviation is from 0.08 to 0.87, mean 0.204 cm, except only for patients #3 separated by a mean 0.13 cm, maximum of 0.23 cm. This result is a good correlation between internal tumor motion imaged by fluoroscopic unit and external marker motion with RPM during expiration within 0.23 cm. We have demonstrated that gating may be best performed but special attention should be paid to gating for patients whose fiducials do not move in synchrony, because targeting on the correct phase difference alone would not guarantee that the entire tumor volume is within the treatment field.

  • PDF

Management of Ipsilateral Fractures of Humerus and Forearm in Adults (성인에서 동측에 발생한 상완골과 전완골 골절의 치료)

  • Sohn Sung-Keun;Kim Byeong-Hwan;Yang Sung-Wook
    • Clinics in Shoulder and Elbow
    • /
    • v.1 no.2
    • /
    • pp.212-220
    • /
    • 1998
  • Concomitant ipsilateral fractures of the humerus, radius and ulna are uncommon combined injury and are also called "floating elbow". It was found that this injury was usually a result of rather severe trauma and frequently associated injuries to other organ systems. It is controversial in the treatment of the "floating elbow", but the current treatment recommendations are open reduction and internal fixation of both the humerus and the forearm fracture with early initiation of range of motion exercises. The authors reviewed thirteen cases of ipsilateral fractures of the humerus, radius and ulna treated in our clinic from January 1992 to March 1997, and average follow-up period was over 18 months(range, 12 to 36 months). The results obtained were as follows; 1. The most common cause of injury was traffic accident and most common location of fractures was mid-third in both humerus and forearm. 2. The shape of fractures was transverse or comminuted in most cases. 3. The good clinical results were obtained by open reduction and internal fixation of both the humerus and the forearm fracture with early initiation of range of motion exercises. 4. The recovery was affected by the severity of the initial trauma and method of the treatment. 5. According to the Lange and Foster method, the functional result was good in 8 cases, fair in 4 cases and poor in 1 cases.

  • PDF

Evaluation of Dose Distributions Recalculated with Per-field Measurement Data under the Condition of Respiratory Motion during IMRT for Liver Cancer (간암 환자의 세기조절방사선치료 시 호흡에 의한 움직임 조건에서 측정된 조사면 별 선량결과를 기반으로 재계산한 체내 선량분포 평가)

  • Song, Ju-Young;Kim, Yong-Hyeob;Jeong, Jae-Uk;Yoon, Mee Sun;Ahn, Sung-Ja;Chung, Woong-Ki;Nam, Taek-Keun
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.79-88
    • /
    • 2014
  • The dose distributions within the real volumes of tumor targets and critical organs during internal target volume-based intensity-modulated radiation therapy (ITV-IMRT) for liver cancer were recalculated by applying the effects of actual respiratory organ motion, and the dosimetric features were analyzed through comparison with gating IMRT (Gate-IMRT) plan results. The ITV was created using MIM software, and a moving phantom was used to simulate respiratory motion. The doses were recalculated with a 3 dose-volume histogram (3DVH) program based on the per-field data measured with a MapCHECK2 2-dimensional diode detector array. Although a sufficient prescription dose covered the PTV during ITV-IMRT delivery, the dose homogeneity in the PTV was inferior to that with the Gate-IMRT plan. We confirmed that there were higher doses to the organs-at-risk (OARs) with ITV-IMRT, as expected when using an enlarged field, but the increased dose to the spinal cord was not significant and the increased doses to the liver and kidney could be considered as minor when the reinforced constraints were applied during IMRT plan optimization. Because the Gate-IMRT method also has disadvantages such as unsuspected dosimetric variations when applying the gating system and an increased treatment time, it is better to perform a prior analysis of the patient's respiratory condition and the importance and fulfillment of the IMRT plan dose constraints in order to select an optimal IMRT method with which to correct the respiratory organ motional effect.

Development of Artificial Pulmonary Nodule for Evaluation of Motion on Diagnostic Imaging and Radiotherapy (움직임 기반 진단 및 치료 평가를 위한 인공폐결절 개발)

  • Woo, Sang-Keun;Park, Nohwon;Park, Seungwoo;Yu, Jung Woo;Han, Suchul;Lee, Seungjun;Kim, Kyeong Min;Kang, Joo Hyun;Ji, Young Hoon;Eom, Kidong
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.76-83
    • /
    • 2013
  • Previous studies about effect of respiratory motion on diagnostic imaging and radiation therapy have been performed by monitoring external motions but these can not reflect internal organ motion well. The aim of this study was to develope the artificial pulmonary nodule able to perform non-invasive implantation to dogs in the thorax and to evaluate applicability of the model to respiratory motion studies on PET image acquisition and radiation delivery by phantom studies. Artificial pulmonary nodule was developed on the basis of 8 Fr disposable gastric feeding tube. Four anesthetized dogs underwent implantation of the models via trachea and implanted locations of the models were confirmed by fluoroscopic images. Artificial pulmonary nodule models for PET injected $^{18}F$-FDG and mounted on the respiratory motion phantom. PET images of those acquired under static, 10-rpm- and 15-rpm-longitudinal round motion status. Artificial pulmonary nodule models for radiation delivery inserted glass dosemeter and mounted on the respiratory motion phantom. Radiation delivery was performed at 1 Gy under static, 10-rpm- and 15-rpm-longitudinal round motion status. Fluoroscpic images showed that all models implanted in the proximal caudal bronchiole and location of models changed as respiratory cycle. Artificial pulmonary nodule model showed motion artifact as respiratory motion on PET images. SNR of respiratory gated images was 7.21. which was decreased when compared with that of reference images 10.15. However, counts of respiratory images on profiles showed similar pattern with those of reference images when compared with those of static images, and it is assured that reconstruction of images using by respiratory gating improved image quality. Delivery dose to glass dosemeter inserted in the models were same under static and 10-rpm-longitudinal motion status with 0.91 Gy, but dose delivered under 15-rpm-longitudinal motion status was decreased with 0.90 Gy. Mild decrease of delivered radiation dose confirmed by electrometer. The model implanted in the proximal caudal bronchiole with high feasibility and reflected pulmonary internal motion on fluoroscopic images. Motion artifact could show on PET images and respiratory motion resulted in mild blurring during radiation delivery. So, the artificial pulmonary nodule model will be useful tools for study about evaluation of motion on diagnostic imaging and radiation therapy using laboratory animals.

Vibration Measurements in the Mining Industry Applying the Software Install Application to the Kosovo Energy Corporation

  • Luzha, Ibush;Baftiu, Naim;Maloku, Betim;Qarkaxhija, Jusuf
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.362-370
    • /
    • 2022
  • The assessment of specific impacts on the environment is a preventive measure for environmental protection which is based on the definition and proposal of measures that can prevent harmful effects, reduce or eliminate them. In the physical sense, vibration is the oscillating motion of an object with the effect of internal or external forces applied to it. People who touch a vibrating surface or object will feel these vibrations. In general, there are two types of vibration exposure. The first are the vibrations of the hands and arms transmitted by the held parts of tools or machinery. The second are whole-body vibrations transmitted from a seat or surface to a motorized car. The risk of injury to workers exposed to vibration varies depending on the size, frequency, type, duration of exposure, and organ affected. The purpose of this paper is to review the measurements of vibrations in the Kosovo Energy Corporation in the mine Sibovc Southwest, where coal with a rotary excavator is exploited and the evaluation of vibrations for working conditions for workers working in that environment and improving working conditions for the measurement of vibrations we have used the device Minimate DS 078, the purpose of such environmental impact assessment is to collect data and predict the harmful impacts on the environment, namely the impact on water, air, soil, life and health of as well as identify and propose measures that could prevent, reduce or eliminate altogether.

The Literatual Study on Pathologic Change Cognition to the Liver Disease (간장의 병리변화 인식에 대한 문헌적 고찰)

  • Lee Young Su;Kwack Jeong Jin;Lee Gang Nyoung;Choi Chang Won;Kim Hee Chul
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.4
    • /
    • pp.630-636
    • /
    • 2002
  • After The Yellow Emperor's Canon of Internal Medicine, The text researches of pathologic change to the liver disease concluded the next, 1, The category of liver-disease(肝病) include the Symptoms of abnormality due to vital energy and blood motion, emotion and intention, muscular and reproductive function, and legions around descending liver channel. 2. In the theory that Liver-Yang energy(肝陽氣) is always overproducing, Liver-Yin blood(肝陰血) is always lacking, pathologic characteristics for liver disease is functional change of malfunction of the use of body(體用失調), So nourishing the liver and kidney is used for the principal aspects of a disease. regulating and calm the liver is used for the secondary aspects of a disease as the treatment plan, 3. If malfunctioning of the functions of dispersion and discharge(疏泄), Iiver-energy(肝氣) is becoming degected, So overproduct and overflow of ascent and exhalation of liver-yang(肝陽) is becoming blood are ascending following energy. complete usage of Yin-blood(陰血) is responsible for some kinds of mass formed by blood stasis in the early stage of pathogenesis of liver disease syndrome of the energy system as the progession of disease extravasated blood is forming. the pathologic characteristics is appeared loss of control of the vital energy and blood(體用失調) at the liver disease. 4. Sthenia-syndrome of liver(肝實證) and liver-heat syndrome(肝熱證) is appered that overproducing and overflow of dispersion(疏泄太過) and discharge is responsible for overfunctioning of liver disease or some kinds of heat syndrome such as liver fire(肝火), Sthenia of liver-yang(肝陽上亢), the syndromes of sthenic liver heat(肝實熱) are appered. deficiency of the liver(肝虛證) and cold syndrome of liver(肝寒證) is classified pathologic characteristics of cold and heat, deficiency and excess that regression of sensory, motor, mental due to lack of dispersion and discharge(疏泄不及), or intruding of the cold miasma, are degected. 5. The liver is close relation of physiologic function and internal organ such as spleen, stomach, lung, heart, kidney, gall bladder by the meridian channels, because of property of wind Zang, rapid progession is classified by phthologic charateristics.

Daily Setup Uncertainties and Organ Motion Based on the Tomoimages in Prostatic Radiotherapy (전립선암 치료 시 Tomoimage에 기초한 Setup 오차에 관한 고찰)

  • Cho, Jeong-Hee;Lee, Sang-Kyu;Kim, Sei-Joon;Na, Soo-Kyung
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.99-106
    • /
    • 2007
  • Purpose: The patient's position and anatomy during the treatment course little bit varies to some extend due to setup uncertainties and organ motions. These factors could affected to not only the dose coverage of the gross tumor but over dosage of normal tissue. Setup uncertainties and organ motions can be minimized by precise patient positioning and rigid immobilization device but some anatomical site such as prostate, the internal organ motion due to physiological processes are challenge. In planning procedure, the clinical target volume is a little bit enlarged to create a planning target volume that accounts for setup uncertainties and organ motion as well. These uncertainties lead to differences between the calculated dose by treatment planning system and the actually delivered dose. The purpose of this study was to evaluate the differences of interfractional displacement of organ and GTV based on the tomoimages. Materials and Methods: Over the course of 3 months, 3 patients, those who has applied rectal balloon, treated for prostatic cancer patient's tomoimage were studied. During the treatment sessions 26 tomoimages per patient, Total 76 tomoimages were collected. Tomoimage had been taken everyday after initial setup with lead marker attached on the patient's skin center to comparing with C-T simulation images. Tomoimage was taken after rectal balloon inflated with 60 cc of air for prostate gland immobilization for daily treatment just before treatment and it was used routinely in each case. The intrarectal balloon was inserted to a depth of 6 cm from the anal verge. MVCT image was taken with 5 mm slice thickness after the intrarectal balloon in place and inflated. For this study, lead balls are used to guide the registration between the MVCT and CT simulation images. There are three image fusion methods in the tomotherapy, bone technique, bone/tissue technique, and full image technique. We used all this 3 methods to analysis the setup errors. Initially, image fusions were based on the visual alignment of lead ball, CT anatomy and CT simulation contours and then the radiation therapist registered the MVCT images with the CT simulation images based on the bone based, rectal balloon based and GTV based respectively and registered image was compared with each others. The average and standard deviation of each X, Y, Z and rotation from the initial planning center was calculated for each patient. The image fusions were based on the visual alignment of lead ball, CT anatomy and CT simulation contours. Results: There was a significant difference in the mean variations of the rectal balloon among the methods. Statistical results based on the bone fusion shows that maximum x-direction shift was 8 mm and 4.2 mm to the y-direction. It was statistically significant (P=<0.0001) in balloon based fusion, maximum X and Y shift was 6 mm, 16mm respectively. One patient's result was more than 16 mm shift and that was derived from the rectal expansions due to the bowl gas and stool. GTV based fusion results ranging from 2.7 to 6.6 mm to the x-direction and 4.3$\sim$7.8 mm to the y-direction respectively. We have checked rotational error in this study but there are no significant differences among fusion methods and the result was 0.37$\pm$0.36 in bone based fusion and 0.34$\pm$0.38 in GTV based fusion.

  • PDF

Evaluating Correlation between Geometrical Relationship and Dose Difference Caused by Respiratory Motion Using Statistical Analysis

  • Shin, Dong-Seok;Kang, Seong-Hee;Kim, Dong-Su;Kim, Tae-Ho;Kim, Kyeong-Hyeon;Cho, Min-Seok;Noh, Yu-Yoon;Yoon, Do-Kun;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.203-212
    • /
    • 2016
  • Dose differences between three-dimensional (3D) and four-dimensional (4D) doses could be varied according to the geometrical relationship between a planning target volume (PTV) and an organ at risk (OAR). The purpose of this study is to evaluate the correlation between the overlap volume histogram (OVH), which quantitatively shows the geometrical relationship between the PTV and OAR, and the dose differences. 4D computed tomography (4DCT) images were acquired for 10 liver cancer patients. Internal target volume-based treatment planning was performed. A 3D dose was calculated on a reference phase (end-exhalation). A 4D dose was accumulated using deformation vector fields between the reference and other phase images of 4DCT from deformable image registration, and dose differences between the 3D and 4D doses were calculated. An OVH between the PTV and selected OAR (duodenum) was calculated and quantified on the basis of specific overlap volumes that corresponded to 10%, 20%, 30%, 40%, and 50% of the OAR volume overlapped with the expanded PTV. Statistical analysis was performed to verify the correlation with the OVH and dose difference for the OAR. The minimum mean dose difference was 0.50 Gy from case 3, and the maximum mean dose difference was 4.96 Gy from case 2. The calculated range of the correlation coefficients between the OVH and dose difference was from -0.720 to -0.712, and the R-square range for regression analysis was from 0.506 to 0.518 (p-value <0.05). However, when the 10% overlap volume was applied in the six cases that had OVH value ${\leq}2$, the average percent mean dose differences were $34.80{\pm}12.42%$. Cases with quantified OVH values of 2 or more had mean dose differences of $29.16{\pm}11.36%$. In conclusion, no significant statistical correlation was found between the OVH and dose differences. However, it was confirmed that a higher difference between the 3D and 4D doses could occur in cases that have smaller OVH value.