• 제목/요약/키워드: Internal model

검색결과 4,533건 처리시간 0.028초

The Relationship Among Mother-Daughter Relationship, Husband-Wife Relationship and Prenatal Attachment according to Pregnant Women's Internal Working Model (임부의 내적 작동모델에 따른 산전애착과 친모와의 관계 및 배우자와의 관계)

  • Jeong, Young-Sook
    • Women's Health Nursing
    • /
    • 제10권3호
    • /
    • pp.210-217
    • /
    • 2004
  • Purpose: The purpose of this study was to identify the relationship among mother-daughter relationship, husband-wife relationship, and prenatal attachment according to pregnant women's internal working model. Method: A convenience sample of 68 pregnant women was recruited from two OBGYN hospitals in M city. Data collection was conducted through the use of an Adult Attachment Interview and questionnaires. This study used a descriptive correlational design and the period of investigation was from July 3-20, 2002. 41 of the 68 women were in a secure pregnant women's internal working model and 27 of the 68 in insecure ones. The data were analyzed by Chi-square test, t-test, and Pearson Correlation Coefficient. Result: The results of this study were as follows: Mean score of the prenatal attachment of the secure pregnant women and mean score of the mother-daughter relationship of the secure pregnant women was significantly higher than that of insecure ones. 3) Prenatal attachment was negatively and significantly related to mother-daughter attachment and husbandwife attachment in the secure pregnant women's internal working model. However it was not significantly relationship in insecure pregnant women's internal working model. Conclusion: It is found in this study that there is an intergenerational attachment relationship during pregnancy. Further findings support the development of creative strategies to enhance positive attachment relationships for pregnant women. It is recommended to develop nursing education of attachment for the insecure pregnant women's internal working model.

  • PDF

Optimization of Design Variables of Detection Algorithm for Loss of Balance Using a Linear Internal Model (균형상실의 검출 성능 향상을 위한 내부 모델의 설계변수 선정 및 민감도 평가)

  • Kim, Kwang-Hoon;Kim, In-Su;Son, Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제34권9호
    • /
    • pp.1153-1160
    • /
    • 2010
  • The detection algorithm for loss of balance had three main parts: one for processing data, another for constructing an internal model, and a third for detecting the loss of balance. The part related to the internal model is the most important part of the algorithm. The purpose of this study is to evaluate the effect of variables associated with the internal model on the success rate of the algorithm. The internal model depends on the type of linearization adopted and the operating period of the algorithm. The design variables were evaluated by performing sensitivity analysis of the variables of the internal model in order to obtain the success rate of the algorithm. The results showed that the most sensitive variable was the period and the period of 0.3 s yielded the highest success rate of 97.1%. Further, the ranges of the design variables that can facilitate a success rate of over 95% are presented.

Characterization of Internal Reorientation of Methyl Group in 2,6-Dichlorotoluene

  • Nam-Goong, Hyun;Rho, Jung-Rae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • 제13권1호
    • /
    • pp.35-55
    • /
    • 2009
  • The two correlation times previously obtained in our coupled $^{13}C$ relaxation measurement for the methyl group in 2,6-dichlorotoluene may be used as a criterion for evaluating the reorientation dynamics of an internal rotor. We numerically tested an extended diffusion model and the Smoluchowski diffusion equation to see how the rotational inertial effect and jump character contribute to the internal correlation time ratio of the internal rotor. We also analytically solved the general jump model with three different rate constants in a sixfold symmetric potential barrier. By assuming that the internal rotation of the methyl group in 2,6-dichlorotoluene can be described in terms of jumps among sixfold harmonic potential wells, we can conclude that the jump model satisfactorily reproduce the experimental data and the rate for sixfold jump is at least 1.53 times as great as that of a threefold jump.

Three-dimensional Numerical Modeling of Water Temperature and Internal Waves in a Large Stratified Lake (대형 성층 호수의 수온과 내부파의 3차원 수치 모델링)

  • Chung, Se-Woong;Schladow, S. Geoffrey
    • Journal of Korean Society on Water Environment
    • /
    • 제31권4호
    • /
    • pp.367-376
    • /
    • 2015
  • The momentum and kinetic turbulent energy carried by the wind to a stratified lake lead to basin-scale motions, which provide a major driving force for vertical and horizontal mixing. A three-dimensional (3D) hydrodynamic model was applied to Lake Tahoe, located between California and Nevada, USA, to simulate the dominant basin-scale internal waves in the deep lake. The results demonstrated that the model well represents the temporal and vertical variations of water temperature that allows the internal waves to be energized correctly at the basin scale. Both the model and thermistor chain (TC) data identified the presence of Kelvin modes and Poincare mode internal waves. The lake was weakly stratified during the study period, and produced large amplitude (up to 60 m) of internal oscillations after several wind events and partial upwelling near the southwestern lake. The partial upwelling and followed coastal jets could be an important feature of basin-scale internal waves because they can cause re-suspension and horizontal transport of fine particles from nearshore to offshore. The internal wave dynamics can be also associated with the distributions of water quality variables such as dissolved oxygen and nutrients in the lake. Thus, the basin-scale internal waves and horizontal circulation processes need to be accurately modeled for the correct simulation of the dissolved and particulate contaminants, and biogeochemical processes in the lake.

Model Tracking Dual Stochastic Controller Design Under Irregular Internal Noises

  • Lee Jong-Bok;Cho Yun-Hyun;Ji Tae-Young;Heo Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.652-657
    • /
    • 2006
  • Although many methods about the control of irregular external noise have been introduced and implemented, it is still necessary to design a controller that will be more effective and efficient methods to exclude for various noises. Accumulation of errors due to model tracking, internal noises (thermal noise, shot noise and 1/f noise) that come from elements such as resistor, diode and transistor etc. in the circuit system and numerical errors due to digital process often destabilize the system and reduce the system performance. New stochastic controller is adopted to remove those noises using conventional controller simultaneously. Design method of a model tracking dual controller is proposed to improve the stability of system while removing external and internal noises. In the study, design process of the model tracking dual stochastic controller is introduced that improves system performance and guarantees robustness under irregular internal noises which can be created internally. The model tracking dual stochastic controller utilizing F-P-K stochastic control technique developed earlier is implemented to reveal its performance via simulation.

Effect of bidirectional internal flow on fluid.structure interaction dynamics of conveying marine riser model subject to shear current

  • Chen, Zheng-Shou;Kim, Wu-Joan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권1호
    • /
    • pp.57-70
    • /
    • 2012
  • This article presents a numerical investigation concerning the effect of two kinds of axially progressing internal flows (namely, upward and downward) on fluid.structure interaction (FSI) dynamics about a marine riser model which is subject to external shear current. The CAE technology behind the current research is a proposed FSI solution, which combines structural analysis software with CFD technology together. Efficiency validation for the CFD software was carried out first. It has been proved that the result from numerical simulations agrees well with the observation from relating model test cases in which the fluidity of internal flow is ignorable. After verifying the numerical code accuracy, simulations are conducted to study the vibration response that attributes to the internal progressive flow. It is found that the existence of internal flow does play an important role in determining the vibration mode (/dominant frequency) and the magnitude of instantaneous vibration amplitude. Since asymmetric curvature along the riser span emerges in the case of external shear current, the centrifugal and Coriolis accelerations owing to up- and downward internal progressive flows play different roles in determining the fluid.structure interaction response. The discrepancy between them becomes distinct, when the velocity ratio of internal flow against external shear current is relatively high.

The inertial coefficient for fluctuating flow through a dominant opening in a building

  • Xu, Haiwei;Yu, Shice;Lou, Wenjuan
    • Wind and Structures
    • /
    • 제18권1호
    • /
    • pp.57-67
    • /
    • 2014
  • For a building with a dominant windward wall opening, the wind-induced internal pressure response can be described by a second-order non-linear differential equation. However, there are two ill-defined parameters in the governing equation: the inertial coefficient $C_I$ and the loss coefficient $C_L$. Lack of knowledge of these two parameters restricts the practical use of the governing equation. This study was primarily focused on finding an accurate reference value for $C_I$, and the paper presents a systematic investigation of the factors influencing the inertial coefficient for a wind-tunnel model building including: opening configuration and location, wind speed and direction, approaching flow turbulence, the model material, and the installation method. A numerical model was used to simulate the volume deformation under internal pressure, and to predict the bulk modulus of an experimental model. In considering the structural flexibility, an alternative approach was proposed to ensure accurate internal volume distortions, so that similarity of internal pressure responses between model-scale and full-scale building was maintained. The research showed 0.8 to be a reasonable standard value for the inertial coefficient.

An Adaptive Pole-zero Placement Algorithm Using Internal Model Principle (Internal Model Principle을 이용한 극-영점 배치 적응제어기에 관한 연구)

  • Lee, Jeong-Joon;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.388-392
    • /
    • 1989
  • In this paper, an adaptive pole-zero placement algorithm which has disturbance rejection properties is proposed. This method using the internal model principle is shown to reject the disturbances asymptotically. Furthermore, a method which reduces the number of estimated parameters is proposed. Some simulation results are given to demonstrate the performance of the algorithms.

  • PDF

Analysis of Casual Relationships among Tourist Destination Knowledge and BSC Performance Perspectives (관광지 지식과 균형성과표 관점의 인과관계에 관한 연구)

  • Pyo, Sungsoo;Chung, Seunghoon;Chang, Haesook
    • Knowledge Management Research
    • /
    • 제6권1호
    • /
    • pp.1-17
    • /
    • 2005
  • Both knowledge management and BSC practices are in its inception in the tourism field, and the study explores the relationships between knowledge and BSC perspectives using correlations and path analysis. The purpose of this study was to explore the casual relationships among tourist destination knowledge and BSC performance perspectives. The study model added knowledge perspectives to the usual BSC model (with customer, growth and learning, internal process, and financial perspectives), in addition to the modification of the financial perspectives to economic, socio-cultual and physical impact. The study found out that knowledge supports learning and growth perspectives greatly, and less extent, internal processes and customer perspectives. Learning and growth affects internal processes and customer perspectives. Internal process supports customer perspectives. Both customer and, less extent, internal process have impact on the final results. The final analysis results were different by destination type. The study concludes with recommendations for further studies including rational BSC model for tourist destinations and relationships between BSC performance indicators.

  • PDF

Data-Based Model Approach to Predict Internal Air Temperature of Greenhouse (데이터 기반 모델에 의한 온실 내 기온 변화 예측)

  • Hong, Se Woon;Moon, Ae Kyung;Li, Song;Lee, In Bok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제57권3호
    • /
    • pp.9-19
    • /
    • 2015
  • Internal air temperature of greenhouse is an important variable that can be influenced by the complex interaction between outside weather and greenhouse inside climate. This paper focuses on a data-based model approach to predict internal air temperature of the greenhouse. External air temperature, solar radiation, wind speed and wind direction were measured next to an experimental greenhouse supported by the Electronics and Telecommunications Research Institute and used as input variables for the model. Internal air temperature was measured at the center of three sections of the greenhouse and used as an output variable. The proposed model consisted of a transfer function including the four input variables and tested the prediction accuracy according to the sampling interval of the input variables, the orders of model polynomials and the time delay variable. As a result, a second-order model was suitable to predict the internal air temperature having the predictable time of 20-30 minutes and average errors of less than ${\pm}1K$. Afterwards mechanistic interpretation was conducted based on the energy balance equation, and it was found that the resulting model was considered physically acceptable and satisfied the physical reality of the heat transfer phenomena in a greenhouse. The proposed data-based model approach is applicable to any input variables and is expected to be useful for predicting complex greenhouse microclimate involving environmental control systems.