• Title/Summary/Keyword: Internal heating technique

Search Result 16, Processing Time 0.031 seconds

Time Constant of a Fine-Wire Thermocouple Immersed to Fluids (유체에 잠겨있는 가는 열전대의 시간상수 측정)

  • 송치성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.190-199
    • /
    • 1998
  • a new measuring method is suggested to determine the time constant of a thermocouple wire to be applied for the measurement of the true fluid temperatures in varying flow states. Based on the techniques of internal heating which are commonly used to measure mean time constants we extend the existing method to measure instantaneous time constants continuously. A method of measurement and analysis is presented and verified experimentally.

  • PDF

The Development of Thermal Model for Safety Analysis on Electronics in High-Speed Vehicle (고속 비행체 전자 장비의 안전성 예측을 위한 열해석 모델 구축)

  • Lee, Jin Gwan;Lee, Min Jung;Hwang, Su Kweon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.437-446
    • /
    • 2021
  • As flying vehicle's speed is getting faster, the magnitude of aerodynamic heating is getting bigger. High-speed vehicle's exterior skin is heated to hundreds of degrees, and electrical equipments inside the vehicle are heated, simultaneously. Since allowable temperature of electrical equipments is low, they are vulnerable to effect of aerodynamic heating. These days, lots of techniques are applied to estimate temperature of electrical equipments in flight condition, and to make them thermally safe from heating during flight. In this paper, new model building technique for thermal safety analysis is introduced. To understand internal thermal transient characteristic of electrical equipment, simple heating experiment was held. From the result of experiment, we used our new building technique to build thermal analysis model which reflects thermal transient characteristic of original equipment. This model can provide internal temperature differences of electrical equipment and temperature change of specific unit which is thermally most vulnerable part in the equipment. So, engineers are provided much more detailed thermal analysis data for thermal safety of electrical equipment through this technique.

A Characteristic Heating-Energy Expend of Insulation Block System for Korea Type Passive House (한국형 패시브하우스를 위한 단열블럭시스템의 난방에너지소비 특성)

  • Kang, Jae-Sik;Choi, Gyoung-Seok;Yang, Kwan-Seop;Lee, Seung-Eon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.603-607
    • /
    • 2009
  • About a Structure is performance external insulation is fundamantal performance for enrgy-saving. these day, most of residential structures have constructed by internal insulation method structure. The method structure internal insulation have construction and economical efficiency, but on the other hand, be generated heat loss by heat bridge especially, be generated loss heat-energy logical consequence in structure ondol. The external insulation structure method has a mert able to minimum to loss heat about heat-bridge. But the external insulation technique is unsatisfactory statues within the know-how and method of construction and materials compared with developed countries. The recently, the requirement of market related to the external insulation technique is resulted by the energy efficiency system, but it can lead to the lack of alternative technique In study on the korea type passive house building design for insulation block method of wall system has to experimental characteristic heat-energy of practice building. In result field-experimental, the heat-bridge appeared to characteristic spent heat-energy of blow 2L class and have a suffience performance it.

  • PDF

Thermal Shock Resistance of $Al_{2}O_{3}$- and Fe-$Al_{2}TiO_{5}$-based Castable Refractories

  • Liu, T.;Latella, B.A.;Bendeich, P.
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.345-351
    • /
    • 1998
  • Thermal shock resistance of $Al_2O_3$- and Fe-$Al_2TiO_5$-based Castable Refractories was studied using a central heating technique. Ring type specimens, 10mm thick and 20 and 100mm inner and outer diameters, respectively, were rapidly heated on the internal surface of the centre hole using a high power electrical heating element. The temperature field was measured experimentally and modelled using finite element analysis (FEA). The thermal stress field was also modelled using FEA. A radial notch was introduced to the ring specimens to enable calculation of the thermal stress intensity factors (SIF). A special LVDT device was incorporated in the thermal shock tester to monitor crack mouth opening displacement (COD). The thermal shock fracture initiation and crack propagation behaviour of the castable refractories were ascertained using the COD measurements and the fracture mechanics analysis data.

  • PDF

Investigation of the effect of internal curing as a novel method for improvement of post-fire properties of high-performance concrete

  • Moein Mousavi;Habib Akbarzadeh Bengar
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.309-324
    • /
    • 2024
  • Internal curing, a widely used method for mitigating early-age shrinkage in concrete, also offers notable advantages for concrete durability. This paper explores the potential of internal curing by partial replacement of sand with fine lightweight aggregate for enhancing the behavior of high-performance concrete at elevated temperatures. Such a technique may prove economical and safe for the construction of skyscrapers, where explosive spalling of high-performance concrete in fire is a potential hazard. To reach this aim, the physico-mechanical features of internally cured high-strength concrete specimens, including mass loss, compressive strength, strain at peak stress, modulus of elasticity, stress-strain curve, toughness, and flexural strength, were investigated under different temperature exposures; and to predict some of these mechanical properties, a number of equations were proposed. Based on the experimental results, an advanced stress-strain model was proposed for internally cured high-performance concrete at different temperature levels, the results of which agreed well with the test data. It was observed that the replacement of 10% of sand with pre-wetted fine lightweight expanded clay aggregate (LECA) not only did not reduce the compressive strength at ambient temperature, but also prevented explosive spalling and could retain 20% of its ambient compressive strength after heating up to 800℃. It was then concluded that internal curing is an excellent method to enhance the performance of high-strength concrete at elevated temperatures.

The Nondestructive Reliability Evaluation which it Applies Ultrasound Thermography about Cutting Crack of Piston Skirt (초음파 서모그래피를 적용한 피스톤 스커트 절단균열에 대한 비파괴 신뢰성 평가)

  • Yang, Yong-Ha;Ma, Sang-Dong;Kim, Jea-Yeol
    • Tribology and Lubricants
    • /
    • v.26 no.6
    • /
    • pp.336-340
    • /
    • 2010
  • Ultrasound thermography detects defects by radiating 20 ~ 30 kHz ultrasound waves to the samples and capturing the heat generated from the defects with the use of an infrared thermographic camera. This technology is being spotlighted as a next-generation NDE for the automobile and aerospace industries because it can test large areas and can detect defects such as cracks and exfoliations in real time. The heating mechanism of the ultrasound vibration has not been accurately determined, but the thermomechanical coupling effect and the surface or internal friction are estimated to be the main causes. When this heat is captured by an infrared thermographic camera, the defects inside or on the surface of objects can be quickly detected. Although this technology can construct a testing device relatively simply and can detect defects within a short time, there are no reliable data about the factors related to its detection ability. In this study, the ultrasound thermography technique was used to manufacture gasoline and diesel engine piston specimens, and nondestructive reliability tests to verify the applicability and validity of the ultrasound thermography technique.

Effect of Cross/Parallel Rib Configurations on Heat/Mass Transfer in Rotating Two-Pass Turbine Blade Internal Passage (회전하는 터빈 블레이드 내부 이차냉각유로에서 엇갈린요철과 평행요철이 열/물질전달에 미치는 영향)

  • Lee, Se-Yeong;Lee, Dong-Ho;Jo, Hyeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1249-1259
    • /
    • 2002
  • The present study investigates the convective heat/mass transfer inside a cooling passage of rotating gas-turbine blades. The rotating duct has various configurations made of ribs with 70。 attack angle, which are attached on leading and trailing surfaces. A naphthalene sublimation technique is employed to determine detailed local heat transfer coefficients using the heat and mass transfer analogy. The present experiments employ two-surface heating conditions in the rotating duct because the surfaces, exposed to hot gas stream, are pressure and suction side surfaces in the middle passages of an actual gas-turbine blade. In the stationary conditions, the parallel rib arrangement presents higher heat/mass transfer characteristics in the first pass, however, these characteristics disappear in the second pass due to the turning effects. In the rotating conditions, the cross rib present less heat/mass transfer discrepancy between the leading and the trailing surfaces in the first pass. In the second pass, the heat/mass transfer characteristics are much more complex due to the combined effects of the angled ribs, the sharp fuming and the rotation.

The Effect of the Collision Process Between Molecules on the Rates of Thermal Relaxation of the Translational-Rotational-Vibrational Energy Exchange (분자간 충돌과정에 따른 병진-회전-진동에너지의 이완율)

  • Heo, Joong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1494-1500
    • /
    • 2004
  • A zero-dimensional direct simulation Monte Carlo(DSMC) model is developed for simulating diatomic gas including vibrational kinetics. The method is applied to the simulation of two systems: vibrational relaxation of a simple harmonic oscillator and translational-rotational-vibrational energy exchange process under heating and cooling. In the present DSMC method, the variable hard sphere molecular model and no time counter technique are used to simulate the molecular collision kinetics. For simulation of diatomic gas flows, the Borgnakke-Larsen phenomenological model is adopted to redistribute the translational and internal energies.

Estimation of Radio Frequency Electric Field Strength for Dielectric Heating of Phenol-Resorcinol-Formaldehyde Resin Used for Manufacturing Glulam (구조용 집성재 제조용 접착제(Phenol-Resorcinol-Formaldehyde Resin) 유전 가열을 위한 고주파 전기장 세기 추산)

  • Yang, Sang-Yun;Han, Yeonjung;Park, Yonggun;Eom, Chang-Deuk;Kim, Se-Jong;Kim, Kwang-Mo;Park, Moon-Jae;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.339-345
    • /
    • 2014
  • For enhancing productivity of glulam, high frequency (HF) curing technique was researched in this study. Heat energy is generated by electromagnetic energy dissipation when HF wave is applied to a dielectric material. Because both lamina and adhesives have dielectric property, internal heat generation would be occurred when HF wave is applied to glulam. Most room temperature setting adhesives such as phenol-resorcinol-formaldehyde (PRF) resin, which is popularly used for manufacturing glulam, can be cured more quickly as temperature of adhesives increases. In this study, dielectric properties of larch wood and PRF adhesives were experimentally evaluated, and the mechanism of HF heating, which induced the fast curing of glue layer in glulam, was theoretically analyzed. Result of our experiments showed relative loss factor of PRF resin, which leads temperature increase, was higher than that of larch wood. Also, it showed density and specific heat of PRF, which are resistance factors of temperature increase, were higher than those of wood. It was expected that the heat generation in PRF resin by HF heating would occur greater than in larch wood, because the ratio of relative loss factor to density and specific heat of PRF resin was greater than that of larch wood. Through theoretical approach with the experimental results, the relative strengths of ISM band HF electric fields to achieve a target heating rate were estimated.

Development of a Numerical Modeling Technique for Predicting Groundwater flow and Heat Transport in a Standing Column Well (수주지열정의 지하수 유동 및 지열 이동 예측을 위한 수치 모델링 기법 개발)

  • Park, Seongmin;Hwang, Gisub;Moon, Jongphil;Kihm, Jung-Hwi
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.461-471
    • /
    • 2016
  • Numerical modules based on a conventional thermo-hydrological numerical model, TOUGH2, are developed to provide a numerical modeling technique for a standing column well (SCW). Cooling and heating operations for two different types of SCW are then simulated using these modules. Modeling showed these operations to be significantly influenced by heat exchange and fluid mixing between the SCW and the adjacent geologic formation and groundwater. The results also reveal that heat exchange between the oppositely flowing outflow and inflow in the PVC or PE pipe and the SCW borehole is an important factor. Overall, the numerical modeling technique developed here can reasonably simulate fluid flow and heat transport phenomena in the complex internal structures of a SCW. The proposed technique can be used practically for the quantitative analysis of heat exchange in a SCW at the design, construction, and operation stages.