• Title/Summary/Keyword: Internal friction angle

Search Result 342, Processing Time 0.023 seconds

Factor of safety in limit analysis of slopes

  • Florkiewicz, Antoni;Kubzdela, Albert
    • Geomechanics and Engineering
    • /
    • v.5 no.5
    • /
    • pp.485-497
    • /
    • 2013
  • The factor of safety is the most common measure of the safety margin for slopes. When the traditionally defined factor is used in kinematic approach of limit analysis, calculations can become elaborate, and iterative methods have to be used. To avoid this inconvenience, the safety factor was defined in terms of the work rates that are part of the work balance equation used in limit analysis. It was demonstrated for two simple slopes that the safety factors calculated according to the new definition fall close to those calculated using the traditional definition. Statistical analysis was carried out to find out whether, given normal distribution of the strength parameters, the distribution of the safety factor can be approximated with a well-defined probability density function. Knowing this function would make it convenient to calculate the probability of failure. The results indicated that the normal distribution could be used for low internal friction angle (up to about $16^{\circ}$) and the Johnson distribution could be used for larger angles ${\phi}$. The data limited to two simple slopes, however, does not allow assuming these distributions a priori for other slopes.

Case of slope stability in weathered metamorphic rock (풍화된 변성암 사면의 안정대책 사례)

  • Kim, Jae-Hong;Park, Chal-Sook;Jeon, Je-Sung;Hong, Won-Pho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1400-1405
    • /
    • 2008
  • Execute surface of the earth geological survey for stability analysis of stealing cutting sides and investigated wide area nature of soil structure. Inflected DIPS that measure discontinuity's direction that develop to slope and is slope stability a wide use program for Stereographic Projection Method analysis that utilize geometrical correlation of stealing four sides and discontinuity surface. It is principle that angle of internal friction that is basis element of stability estimation applies direct shear test result on joint side, Examination is impossible by case execution, suppose by 30 angles that apply more conservatively in base rock slope sides usually and achieved analysis. When analyze, consider discontinuity's various adult that develop in research slope, after conduct first each discontinuity different assay falling into fault, joint, executed stability estimation which synthesize whole discontinuity data. When ailment element is recognized as analysis result, wished to present stability countermeasure way of most suitable to take into account of execution, stability, economic performance.

  • PDF

A Study on Behavior of the Lateral Movement of Breakwater by Centrifuge model Experiments (원심모형실험에 의한 방파제의 수평변위 거동에 관한 연구)

  • Lee, Dong-Won;Kim, Dong-Gun;Jun, Sang-Hyun;Yoo, Nam-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1473-1478
    • /
    • 2010
  • For the cassion type of breakwater under the condition of large wave loads, stability about lateral movement of breakwater was investigated by performing centrifuge model experiments. Prototype of breakwater was modelled by scaling down to centrifuge model and the soft ground reinforced with grouting was also reconstructed in the centrifuge model experiments. Sandy ground beneath breakwater was prepared with a soil sampled in field so that identical value of internal friction angle could be obtained. Centrifuge model experiments were carried out to reconstruct the construction sequence in field. Lateral static wave load was applied to the model caisson after the final stage of construction sequence was rebuilt and the measured lateral movement of caisson was compared with allowable value by the code to assess the stability about lateral movement of the breakwater.

  • PDF

An Experimental Study on the Effects of Bottom Ash Compaction Pile in the Sea Clay Layer (해성 점토지반의 저회다짐말뚝 보강 효과에 관한 실험적 연구)

  • Park, Se-Hyun;Han, Yun-Su;Do, Jong-Nam;Chun, Byung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.595-598
    • /
    • 2010
  • Many economical and efficient methods such as sand drain method(SD), plastic board drain(PBD), sand compaction pile, vacuum consolidation method, etc., have been used for soft grounds. The case of sand compaction pile has an effect on accelerating consolidation and increasing bearing capacity by penetration at regular intervals under soft grounds for reducing the drainage path. But, this method has caused not only the nature damage by extracting the sands indiscreetly but also the economical problem for importing the sands because it needs so much sand to make the sand compaction pile. Thus, this study choosed the bottom ash which has similar engineering characteristics with sand. It was performed that clogging test and large direct shear test changing the bottom ash replacement ratio in soft ground for studying strength characteristics of soft ground using bottom ash compaction pile. As a result of the test, the internal friction angle was largely increased and the cohesion was decreased as the replacement ratio increased.

  • PDF

Exergetic analysis for optimization of a rotating equilateral triangular cooling channel with staggered square ribs

  • Moon, Mi-Ae;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.229-236
    • /
    • 2016
  • Exergetic analysis was introduced in optimization of a rotating equilateral triangular internal cooling channel with staggered square ribs to maximize the net exergy gain. The objective function was defined as the net exergy gain considering the exergy gain by heat transfer and exergy losses by friction and heat transfer process. The flow field and heat transfer in the channel were analysed using three-dimensional Reynolds-averaged Navier-Stokes equations under the uniform temperature condition. Shear stress transport turbulence model has been selected as a turbulence closure through the turbulence model test. Computational results for the area-averaged Nusselt number were validated compared to the experimental data. Three design variables, i.e., the angle of rib, the rib pitch-to-hydraulic diameter ratio and the rib width-to-hydraulic diameter ratio, were selected for the optimization. The optimization was performed at Reynolds number, 20,000. Twenty-two design points were selected by Latin hypercube sampling, and the values of the objective function were evaluated by the RANS analysis at these points. Through optimization, the objective function value was improved by 22.6% compared to that of the reference geometry. Effects of the Reynolds number, rotation number, and buoyancy parameter on the heat transfer performance of the optimum design were also discussed.

Nonlinear analysis of RC beams strengthened by externally bonded plates

  • Park, Jae-Guen;Lee, Kwang-Myong;Shin, Hyun-Mock;Park, Yoon-Je
    • Computers and Concrete
    • /
    • v.4 no.2
    • /
    • pp.119-134
    • /
    • 2007
  • External bonding of steel or FRP plates to reinforced concrete (RC) structures has been a popular method for strengthening RC structures; however, unexpected premature failure often occurs due to debonding between the concrete and the epoxy. We proposed a Coulomb criterion with a constant failure surface as the debonding failure criterion for the concrete-epoxy interface. Diagonal shear bonding tests were conducted to determine the debonding properties that were related to the failure criterion, such as the angle of internal friction and the coefficient of cohesion. In addition, an interface element that utilized the Coulomb criterion was implemented in a nonlinear finite element analysis program to simulate debonding failure behavior. Experimental studies and numerical analysies on RC beams strengthened by an externally bonded steel or FRP plate were used to determine the range of the coefficient of cohesion. The results that were presented prove that premature failure loads of strengthened RC beams can be predicted with using the bonding properties and the finite element program with including the proposed Coulomb criterion.

A Study on Residual Stress Characteristics for Joint of Rock in Ring Shear Tests (링 전단시험기를 이용한 암석절리의 잔류강도 특성에 관한 연구)

  • 권준욱;김선명;윤지선
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.35-41
    • /
    • 2000
  • Residual stress is defined as a minimum stress with a large displacement of specimens and the residual stress after peak shear stress appears with displacement volume but there is no provision to select the residual stress. In the previous study, residual stress was recorded when the change of shear load is small in the condition of the strain more than 15%. But, in this study, hyperbolic function((No Abstract.see full/text), b=experimental constant) of soil test is adapted to joint of rock and the propriety is investigated. In a landslide and landsliding of artificial slope, wedge failure of tunnel with a large displacement, tests are simulated from peak stress to residual stress for safety analysis. But now. direct shear stress and triaxial compressive tests are usually performed to find out characteristics of shear stress about joint. Although these tests get a small displacement, that data of peak stress and residual stress are used for safety analysis. In this study, we tried to determine failure criteria for joints of rock using ring shear test machine. The residual stress following shear behavior was determined by the result of ring shear test and direct shear test. In conclusion, after comparing the results of the two test, we found that cohesion(c) and internal friction angle(ø) of ring shear test are 30% and 22% respectively of those of the direct shear test.

  • PDF

Variation of Pull-out Resistance of Geogrid with Degree of Saturation of Soil

  • Yoo, Chungsik;ALI, TABISH
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • This paper presents the results of experimental investigation on the effect of degree of saturation of soil on the pullout behavior of a geogrid. Different test variables were taken into account while performing the experiment including the soil physical conditions based on water content and external loading applied. The soil used was locally available weathered granite soil. The tests included variations in saturation of about 90%, 80%, 70% and 45% (optimum moisture content). The pullout tests were performed according to ASTM standard D 6706-01. The results indicate that increasing the degree of saturation in the soil decreases the pull-out capacity, which in turn decreases the interface friction angle and interaction coefficient. The decrease in the pullout interface coefficient was observed to be around 12.50% to 33.33% depending on the normal load and degree of saturation of the soil. The test results demonstrated the detrimental effect of increasing the degree of saturation within the reinforce soil on the pullout behavior of reinforcement, thus on the internal stability. The practical inferences of the outcomes are analyzed in detail.

Influence of Facing Stiffness on Global Stability. of Soil Nailing Systems (전면벽체의 강성이 Soil Nailing 시스템의 전체안정성에 미치는 영향)

  • Kim, Hong-Taek;Kwon, Young-Ho;Kang, In-Kyu;Park, Sa-Won;Kang, Yun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.427-434
    • /
    • 2002
  • In Korea, there are recently many attempts to expand a temporary soil nailing system into a permanent soil nailing system since the first construction in 1993. In the downtown area, it is important that the relaxation of the ground is minimized in the ground excavation works. Due to these problems, soil nailing systems are often used the flexible facing such as shotcrete rather than the rigid facing such as SCW, CIP, and jet grout types in Korea. The soil nailing systems with rigid facings are used greatly however it is insufficient researches for design and analysis of soil nailing systems with rigid facings. In this study, various laboratory model tests are carried out to examining the influence the rigidity of facings on the global safety of soil nailing system, failure loads, displacement behaviour, axial force acting on the nails, and distribution of earth pressure. Also, the parametric studies are carried out for the typical section of soil nailed walls according to thickness of concrete facings and internal friction angle of soil using the numerical technique as shear strength reduction technique.

  • PDF

Engineering Properties of Flowable Fills with Various Waste Materials

  • Lee, Kwan-Ho;Lee, Byung-Sik;Cho, Kyung-Rae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.105-110
    • /
    • 2008
  • Flowable fill is generally a mixture of sand, fly ash, a small amount of cement and water. Sand is the major component of most flowable fill with waste materials. Various materials, including two waste foundry sands(WFS), an anti-corrosive waste foundry sand and natural soil, were used as a fine aggregate in this study. Natural sea sand was used for comparison. The flow behavior, hardening characteristics, and ultimate strength behavior of flowable fill were investigated. The unconfined compression test necessary to sustain walkability as the fresh flowable fill hardens was determined and the strength at 28-days appeared to correlate well with the water-to-cement ratio. The strength parameters, like cohesion and internal friction angle, were determined for the samples prepared by different curing times. The creep test for settlement potential was conducted. The data presented show that by-product foundry sand, an anti-corrosive WFS, and natural soil can be successfully used in controlled low strength materials(CLSM), and it provides similar or better properties to that of CLSM containing natural sea sand.