• Title/Summary/Keyword: Internal friction

Search Result 603, Processing Time 0.025 seconds

Evaluation of Characteristics of Shear Strength and Poisso's Ratio through Triaxial and Bender Element Tests (벤더엘리먼트와 삼축시험을 통한 모래의 전단강도 및 포아송비 특성 규명)

  • Yoo, Jin-Kwon;Park, Du-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.67-75
    • /
    • 2014
  • In this paper, isotropically consolidated drained triaxial compression test device installed with bender elements is used to measure stress, stain, and shear wave velocity, from which the characteristics of shear strength and Poisson'ratio are investigated. The results show that there is a unique relationship between maximum shear modulus determined from shear wave velocity and effective vertical stress at failure, which is defined as the sum of vertical and radial stresses at failure. The correlation is very useful since it is possible to predict the shear strength and internal friction angle from shear wave velocity. In addition, Poisson's ratio is determined from measured axial and volumetric strains. It is demonstrated that the range of measured Poisson's ratio is between 0.15 and 0.6, and increases with the axial strain. The ratios at axial strains smaller than 0.2% corresponds to the range recommended in design codes, which are approximately from 0.3~0.35. However, at axial strains exceeding 1%, the measured ratios are between 0.5 and 0.6. It is therefore shown that use of ratios commonly used in practice will result in pronounced underestimation at large strains.

Improvement Effect and Field Application of Dynamic Replacement Using Crushed Rock (암버력 매립층의 동치환공법 현장 적용성 및 개량효과에 관한 연구)

  • Lee, In-Hwan;Lee, Chul-Hee;Shin, Eun Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.1-13
    • /
    • 2019
  • The purpose of this study is to examine the effect of soft ground improvement by dynamic replacement with utilizing crushed rock. In order to understand the ground improvement effect when applying dynamic replacement method with crushed rock, the laboratory test and field test were performed. The internal friction angle and apparent cohesion were derived through direct shear test. The dynamic replacement characteristics were identified by analyzing the weight, drop, and number of blows needed for dynamic replacement. Through the field plate bearing test and density test, the bearing capacity and settlement of the improved ground were measured, and the numerical analysis were conducted to analyze the behavior of the improved ground. In this study, it proposes modified soil experimental coefficient(CDR) to 0.3~0.5 in the dynamic replacement method with crushed rock. Also when applying the dynamic replacement method using crushed rock, the particle size range is less than 100 mm, D90 is less than 80 mm and D15 is more than 30 mm.

The Physical and Mechanical Properties of the Weathered Shale Soils in Hwasun Area (화순 지역 셰일 풍화토의 물리적.역학적 특성에 관한 연구)

  • 김종렬;박정훈;김해경;강권수
    • The Journal of Engineering Geology
    • /
    • v.14 no.2
    • /
    • pp.199-210
    • /
    • 2004
  • In this study, the physical and mechanical properties of the weathered shale soils distributed in the Hwasun area have been measured in the laboratory. The physical and mechanical properties of the weathered shale soils in the study area as follows: the specific gravity is 2.66 to 2.68, the liquid limit is 36.39 to 36.92(%), the plastic limit is 18.53 to 19.48(%), the plasticity index is 17.44 to 17.86 and soil classification is CL. The maximum dry unit weight and optimum moisture content as calculated by compaction test is 22.5 to 23% and 1.58 to $1.61t/\textrm{m}^3$, respectively. The result of direct shear testing show that cohesion in saturated and unsaturated conditions increases according to the increase of dry unit weight. Internal friction angle in an unsaturated condition increases with an increase of dry unit weight, but in a saturated condition, it increases after decreasing. When compares with engineering characteristics of tile weathered shale soils in the Daegu area (Kim et al., 1995), specific gravity is found to be similar, but the liquid and plastic limit of soil samples in this study area is slightly higher than those of soil samples in the Daegu area.

The Properties of Vibration Absorption according to the Diameter of Fiberous $BaTiO_3$ Powder (섬유상 $BaTiO_3$의 분말 직경에 따른 흡진 특성)

  • Seo, Yong-Gyo
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.3-8
    • /
    • 1994
  • Recently, sound and mechanical vibration are becoming important problems in our life. In the present study, the measurement of vibration absorption characteristics of barium titanate ceramics and the investigation of its relationship to microstructures were carried out. The barium titanate ceramics is expected to be better vibration absorption material owing to its chemical and physical stability than other conventional vibration absorbers like glasswool board. Barium titanate ceramics were prepared by sintering fiberous $BaTiO_{3}$ crystallites in order to enhance the vibration absorption characteristics. The fiberous $BaTiO_{3}$ ceramics were prepared through the ionic exchange after the preparation of fiberous $K_2Ti_4O_9$ with 0.2$\mu\textrm{m}$, 1.2$\mu\textrm{m}$, 2.0$\mu\textrm{m}$, diameter length by KDC method. The fiberous crystallites were oriented in a plane perpendicular to the press direction and sintered. The investigation of the grain diameters of the sintered ceramics, equivalent factor, electromechanical coupling factor($k_1$), and the generated voltage(V) shows that the grain's diameter decreases with the increase of the diameter of the used fiberous crystallites. The vibration absorption increases the crystallites' diameter. That means that the vibration absorption increases with the internal friction of grain boundary. Which was identified by the investigation of the equivallent circuit.

  • PDF

A Study on Design of Earth-Retaining Structure Constructed by a Row of Bored Piles (주열식(柱列式) 흙막이벽(壁)의 설계(設計)에 관한 연구(研究))

  • Hong, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.11-18
    • /
    • 1985
  • A row of bored piles has been used in several excavation works to retain the earth. This excavation bracing system has much effect on low-vibration and low-noise during construction. The system is also effective to provide protection to the adjacent existing ground and structures. For the purpose of establishment of a logical design method for the bored piles, first, a theoretical equation to estimate the resistance of piles is derived. Because arching action of soils between piles is considered in the equation, the characteristics of soils and the installation condition of piles would be considered logically from the beginning. Then a method is investigated to decide the interval ratio of piles. According to the method, the interval between piles can be decided from the information of the Peck's stability number, the coefficient of lateral earth pressure and the internal friction angle of soil. Finally, a design method is presented for the bored piles used for excavation work. In the presented design method, such factors as depth of excavation, pile diameter, interval between piles, pile length below bottom of excavation and pile stiffness, can be selected systematically.

  • PDF

Confining Pressure-Dependency on Deformation and Strength Properties of Sands in Plane Strain Compression (평면 변형률 상태에서의 모래의 변형 강도특성의 구속압 의존성)

  • Park, Choon Sik;Tatsuoka, Fumio;Jang, Jeong Wook;Chung, Sung Gyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.543-552
    • /
    • 1994
  • A series of drained plane strain compression tests was performed on dried samples of dense Toyoura sand and Silver Leighton Buzzard sand prepared by air-pluviation method to find out the deformation and strength characteristics on the value of confining pressure ${\sigma}{_3}^{\prime}({\sigma}{_3}^{\prime}=0.05{\sim}4.0kgf/cm^2)$. The axial and lateral strains measured in this apparatus ranged from $10^{-6}$ up to the failure of the specimen. So the stress-strain characteristics would be investigated from very small to very large strain levels. It was found that the change of the angle of internal friction ${\phi}^{\prime}{_{max}}=arcsin\{({\sigma}{_1}^{\prime}-{\sigma}{_3}^{\prime})/({\sigma}{_1}^{\prime}+{\sigma}{_3}^{\prime})\}_{max}$ with the change of ${\sigma}{_3}^{\prime}$ is very small when ${\sigma}{_3}^{\prime}$ is lower than higher. Furthermore, the effect of confining pressure on stiffness of sands was evaluated. It was also found that for the range of shear strain ${\gamma}$ from $10^{-6}$ to those at peak, the Rowe's stress-dilatancy relation seems to be a good approximation for air-dried Toyoura sand and Silver Leighton Buzzard sand, irrespective of the change of ${\sigma}{_3}^{\prime}$.

  • PDF

Engineering Properties of Sewage Sludge Landfill Ground in Nanji-Do (난지도 하수슬러지 매립지반의 공학적 특성)

  • Song, Young-Suk;Yun, Jung-Mann
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.125-133
    • /
    • 2007
  • The environmental and geotechnical properties are investigated to the 8th landfill area made of only sewage sludge in Nanji-Do. To do this, the soils are sampled in this area, and leaching tests, heavy metal content tests, and so on are performed to research the environmental properties. As the result of heavy metal content tests, Pb, Zn, Cu, Ni, Cd and Cr were leached from the sewage sludge. Because the leaching concentration of Cu is more than the standard value of California state, Cu content have to bring down during the recycling of the sewage sludge. Meanwhile, a series of tests concerning specific gravity, liquid and plastic limits, compaction, permeability and shear strength is performed to research the geotechnical properties. The sewage sludge is consisted of sand, silt and clay, and is classified into non-organic silt or organic clay with 42.3% of plastic index. As the result of compaction test, it is expected that the compaction effect according to variation of water contents is low relatively because the dry unit weight is low and the curve of compaction forms flatness. Also, as the result of direct shear tests, the cohesion is $0.058kg/cm^2$, and the internal friction angle is $14^{\circ}$. Taking everything into consideration, the various problems are happening in case of recycling the sludge like the cover layer of landfill and so on because the compaction is bad, and the shear strength is low. Also, it is expected that the ground water pollution caused by leaching the heavy metal into the sludge. To do recycling the sewage sludge in this site, supplementary and treatment programs should be prepared.

Evaluation of Durability and Slope Stability of Green Soil using Cementitious Materials (시멘트 계 재료를 사용한 녹생토의 내구성 및 사면 안정성 평가)

  • Kim, Il-Sun;Choi, Yoon-Suk;Yang, Eun-Ik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.45-53
    • /
    • 2018
  • Among the various slope stabilization methods, the green soil method based on the growth of plants is advantageous to the environment, but the durability and slope stability are insufficient when the green soil method is applied to a steep slope and rock slope sites. Therefore, in this study, green soil, which improved the adhesion performance and the vegetation environment, was developed using cementitious materials and ECG, and the durability and slope stability as well as the possibility of its use as a rock vegetation base material were assessed. From the results, the adhesive force and internal friction angle were higher than that of the existing green soil so that it could be used for in situ construction. The soil hardness value was 26 mm, which was slightly higher than that of the best growth condition of the plant, 18~23 mm, and the drying shrinkage strain was approximately 3%; hence, it is not expected to affect the durability of green soil. The results of a rainfall intensity simulation for evaluating the slope adhesion force showed that slope failure did not occur under all conditions. The damage decreased with increasing slope angle. Therefore, the green soils developed in this study have excellent durability and slope stability and can be used for rock slope sites.

Variation of strength of soil matrix with artificially manipulating particle distribution of granular soil (인위적 입도조정에 따른 지반의 강도특성 변화)

  • Moon, Jun-Ho;Xin, Zhen-Hua;Kim, Gab-Boo;Moon, Sun-Mi;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.56-62
    • /
    • 2018
  • In this study, an artificially formed Gap graded soil, designed to increase its shear strength, was analyzed to determine the strength parameters through direct shear tests. Uniform and fine grain size samples were compared to the Gap graded soil to investigate the increase in the shear strength. Plate loading tests were conducted using 13mm and 19mm aggregates to confirm the reproducibility of the strength enhanced samples for site application. This test confirmed that the particle size ratio and the internal friction angle are correlated to the shear strength, and the shear resistance angle significantly increased in the specific particle size ratio range. The calculation of the ultimate bearing capacity by the plate load test demonstrated that the grain size adjustment method greatly influences the strength increase rate. Therefore, the findings were verified and it was confirmed that a high shear strength is achievable despite the existence of a poor particle size distribution.

A Theoretical Study on Arching Effect of Embankment Pile Grid (격자배치 성토지지말뚝의 아칭효과에 대한 이론적 연구)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.302-309
    • /
    • 2017
  • The influence of the pile diameter, center to center pile spacing, internal friction angle of embankment soil, and height of embankment on the arching efficacy of the embankment pile was investigated. The arching efficacy, which was derived by the arch model developed in the embankment soil was calculated using two methods, one that considers crown failure of the arch and the other that considers load on the pile cap and critical relative spacing ratio for which the arching efficacy calculated by the two methods are the same. According to the computed results in this study, the arching efficacy calculated from a consideration of the load on pile cap governs when the relative spacing ratio becomes smaller and that calculated from the theory of crown failure governs when the relative spacing ratio becomes larger. The critical relative spacing ratio below which the arching efficacy calculated from a consideration of the load on pile cap governs the design decreases with increasing value, which is defined by the ratio of the pile diameter to the pile center to center spacing. Critical relative spacing ratios, which correspond to the values of 0.5 and 0.2 were 0.35 and 0.85, respectively. Considering the computed results, the critical relative spacing ratio decreases with increasing Rankine passive earth pressure coefficient and critical relative spacing ratios, which correspond to values of 5 and 2, were 0.23 and 0.85, respectively. The arching efficacy, which corresponds to the area ratio of 9%, was 54% and the one that corresponds to the value of 3 was 61%; the critical relative spacing ratios, which correspond to those arching efficacies, were greater than 0.5.