• Title/Summary/Keyword: Internal fluid

Search Result 1,330, Processing Time 0.025 seconds

Vibration Control and Dynamic Stability of Pipes by means of Internal Flowing Fluid (내부 유동유체에 의한 송수관의 동적안정성과 진동제어)

  • 류봉조;정승호;엄재섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.550-554
    • /
    • 1995
  • The present paper deals with the dynamic stability and vibration suppression of a cantilevered flexible pipe with a concetrated mass under an internal fluid flow. The equations of motion are derived by energy expressions using Hamilton's pronciple, and some analytical results using Galerkin's method are presented. Finally, the vibration suppression technique by means of an internal fluid flow is demonstrated experimentally.

  • PDF

Axisymmetric Vibrations of a Fluid-filled Thick Infinite Cylindrical Shell with Embedded Internal Strength Members (길이 방향 내심 장력재가 있는 유체 충진된 두꺼운 원통셸의 축대칭 진동 해석)

  • 함일배;신구균;정의봉
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.411-418
    • /
    • 1997
  • A method to analyze the axisymmetric vibration and the internal pressure of the fluid filled, strength member embedded infinite cylindrical shell under the condition of axial static tension load applied is presented. As an example, the hose wall vibration and the internal pressure variation characteristics of a fluid filled infinite polyurethane hose are analyzed and dicussed, under the effects of the variation of the embedded strength members and the response positions.

  • PDF

Spectral Element Analysis of the Pipeline Conveying Internal Unsteady Fluid (내부 비정상 유동을 갖는 파이프계의 스펙트럼요소해석)

  • Park, Jong-Hwan;Lee, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1574-1585
    • /
    • 2005
  • In this paper, a spectral element model is developed for the uniform straight pipelines conveying internal unsteady fluid. Four coupled pipe-dynamics equations are derived first by using the Hamilton's principle and the principles of fluid mechanics. The transverse displacement, the axial displacement, the fluid pressure and the fluid velocity are all considered as the dependent variables. The coupled pipe-dynamics equations are then linearized about the steady state values of the fluid pressure and velocity. As the final step, the spectral element model represented by the exact dynamic stiffness matrix, which is often called spectral element matrix, is formulated by using the frequency-domain solutions of the linearized pipe-dynamics equations. The FFT-based spectral dynamic analyses are conducted to evaluate the accuracy of the present spectral element model and also to investigate the structural dynamic characteristics and the internal fluid transients of an example pipeline system.

A Study on the Dynamic Stability and Vibration Control of Cantilevered Pipes Conveying Fluid (유체유동을 갖는 외팔 송수관의 동적 안정성과 진동제어에 관한 연구)

  • 류봉조;정승호;강용철
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.171-179
    • /
    • 1998
  • The present paper deals with the dynamic stability and vibration suppression of a cantilevered flexible pipe having a tip mass under an internal flowing fluid. The equations of motion are derived by energy expressions using extended Hamilton's principle, and some analytical results using Galerkin's method are presented. Finally, the vibration suppression technique by means of an internal fluid flow is demonstrated experimentally.

  • PDF

Differential Cell Analysis and Lymphocyte Subset Analysis in Bronchoalveolar Lavage Fluid from Patients with Miliary Tuberculosis (속립성 결핵 환자에서 기관지 폐포 세척액 소견)

  • Kim, Ji-Eun;Seol, Hee-Yun;Cho, Woo-Hyun;Kim, Ki-Uk;Jeon, Doo-Soo;Park, Hye-Kyung;Kim, Yun-Seong;Lee, Min-Ki;Park, Soon-Kew
    • Tuberculosis and Respiratory Diseases
    • /
    • v.68 no.4
    • /
    • pp.218-225
    • /
    • 2010
  • Background: Bronchoalveolar lavage (BAL) is a useful technique to recover lower airway fluid and cells involved in many respiratory diseases. Miliary tuberculosis is potentially lethal, but the clinical manifestations are nonspecific and typical radiologic findings may not be seen until late in the course of disease. In addition, invasive procedures are often needed to confirm disease diagnosis. This study analyzed the cells and the T-lymphocyte subset in BAL fluid from patients with miliary tuberculosis to determine specific characteristics of BAL fluid that may help in the diagnosis of miliary tuberculosis, using a less invasive procedure. Methods: On a retrospective basis, we enrolled 20 miliary tuberculosis patients; 12 patients were male and the mean patient age was $40.5{\pm}16.2$ years. We analyzed differential cell counts of BAL fluid and the T-lymphocyte subset of BAL fluid. Results: Total cells and lymphocytes were increased in number in the BAL fluid. The percentage of CD4+ Tlymphocytes and the CD4/CD8 ratio in BAL fluid were significantly decreased and the percentage of CD8+ T-lymphocytes was relatively higher. These findings were more prominent in patients infected with the human immunodeficiency virus (HIV). In the HIV-infected patients, the proportion of lymphocytes was significantly higher in BAL fluid than in peripheral blood. There were no significant differences between the BAL fluid and the peripheral blood T-lymphocytes subpopulation. Conclusion: BAL fluid in patients with miliary tuberculosis demonstrated lymphocytosis, a lower percentage of CD4+ T-lymphocytes, a higher percentage of CD8+ T-lymphocytes, and a decreased CD4/CD8 ratio. These findings were more significant in HIV-infected subjects.

Advanced Computational Dissipative Structural Acoustics and Fluid-Structure Interaction in Low-and Medium-Frequency Domains. Reduced-Order Models and Uncertainty Quantification

  • Ohayon, R.;Soize, C.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.127-153
    • /
    • 2012
  • This paper presents an advanced computational method for the prediction of the responses in the frequency domain of general linear dissipative structural-acoustic and fluid-structure systems, in the low-and medium-frequency domains and this includes uncertainty quantification. The system under consideration is constituted of a deformable dissipative structure that is coupled with an internal dissipative acoustic fluid. This includes wall acoustic impedances and it is surrounded by an infinite acoustic fluid. The system is submitted to given internal and external acoustic sources and to the prescribed mechanical forces. An efficient reduced-order computational model is constructed by using a finite element discretization for the structure and an internal acoustic fluid. The external acoustic fluid is treated by using an appropriate boundary element method in the frequency domain. All the required modeling aspects for the analysis of the medium-frequency domain have been introduced namely, a viscoelastic behavior for the structure, an appropriate dissipative model for the internal acoustic fluid that includes wall acoustic impedance and a model of uncertainty in particular for the modeling errors. This advanced computational formulation, corresponding to new extensions and complements with respect to the state-of-the-art are well adapted for the development of a new generation of software, in particular for parallel computers.

Clinical Utility of Two Interferon-gamma Release Assays on Pleural Fluid for the Diagnosis of Tuberculous Pleurisy

  • Kang, Ji Young;Rhee, Chin Kook;Kang, Na Hyun;Kim, Ju Sang;Yoon, Hyoung-Kyu;Song, Jeong Sup
    • Tuberculosis and Respiratory Diseases
    • /
    • v.73 no.3
    • /
    • pp.143-150
    • /
    • 2012
  • Background: The release of interferon-gamma (IFN-${\gamma}$) by T lymphocytes increases after rechallenge with Mycobacterium tuberculosis antigen, especially, at a localized site of tuberculosis (TB) infection. We aimed to compare the clincial efficacy of two commercial IFN-${\gamma}$ release assays from pleural fluid for the diagnosis in tuberculous pleurisy. Methods: We performed T-SPOT.TB and QuantiFERON-TB Gold tests simultaneously on pleural fluid and peripheral blood samples from patients with pleural effusion, in South Korea, an area with intermediate TB burden. Results: Thirty-six patients were enrolled prospectively, and tuberculous pleurisy was found in 21 patients. Both the numbers of IFN-${\gamma}$ secreting T cells and the concentration of IFN-${\gamma}$ were greater in the pleural tuberculous group, comparing with the non-tuberculous group. Moreover, in the tuberculous group, there was a significant difference in IFN-${\gamma}$ producing spot-forming cells using the T-SPOT.TB method between pleural fluid and peripheral blood. The receiver operating characteristic (ROC) curve, was the greatest for pleural fluid T-SPOT.TB test, followed by peripheral blood T-SPOT.TB test, peripheral blood QuantiFERON-TB Gold test, and pleural fluid QuantiFERON-TB Gold test (area under the ROC curve of 0.956, 0.890, 0.743, and 0.721, respectively). The T-SPOT.TB assay produced less indeterminate results than did QuantiFERON-TB Gold assay in both pleural fluid and peripheral blood. Conclusion: These findings suggest that the pleural fluid T-SPOT.TB test could be the most useful test among the IFN-${\gamma}$ release assays for diagnosing tuberculous pleurisy in an area with an intermediate prevalence of TB infection.

Numerical Study for Experiment on Wave Pattern of Internal Wave and Surface Wave in Stratified Fluid (성층화된 유체 내에서 내부파와 표면파의 파형 변화 실험을 위한 수치적 연구)

  • Lee, Ju-Han;Kim, Kwan-Woo;Paik, Kwang-Jun;Koo, Won-Cheol;Kim, Yeong-Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.236-244
    • /
    • 2019
  • Internal waves occur at the interface between two layers caused by a seawater density difference. The internal waves generated by a body moving in a two-layer fluid are also related to the generation of surface waves because of their interaction. In these complex flow phenomena, the experimental measurements and experimental set-up for the wave patterns of the internal waves and surface waves are very difficult to perform in a laboratory. Therefore, studies have mainly been carried out using numerical analysis. However, model tests are needed to evaluate the accuracy of numerical models. In this study, the various experimental conditions were evaluated using CFD simulations before experiments to measure the wave patterns of the internal waves and surface waves in a stratified two-layer fluid. The numerical simulation conditions included variations in the densities of the fluids, depth of the two-layer fluid, and moving speed of the underwater body.

Application of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to internal explosion inside a water-filled tube

  • Park, Jinwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.572-583
    • /
    • 2019
  • This paper aims to assess the applicability of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to the internal explosion inside a water-filled tube, which previously was studied by many researchers in separate works. Once the explosive charge located at the inner center of the water-filled tube explodes, the tube wall is subjected to an extremely high intensity fluid loading and deformed. The deformation causes a modification of the field of fluid flow in the region near the water-structure interface so that has substantial influence on the response of the structure. To connect the structure and the fluid, valid data exchanges along the interface are essential. Classical fluid structure interaction simulations usually employ a matched meshing scheme which discretizes the fluid and structure domains using a single mesh density. The computational cost of fluid structure interaction simulations is usually governed by the structure because the size of time step may be determined by the density of structure mesh. The finer mesh density, the better solution, but more expensive computational cost. To reduce such computational cost, a non-matched meshing scheme which allows for different mesh densities is employed. The coupled numerical approach of this paper has fewer difficulties in the implementation and computation, compared to gas dynamics based approach which requires complicated analytical manipulations. It can also be applied to wider compressible, inviscid fluid flow analyses often found in underwater explosion events.

Effect of bidirectional internal flow on fluid.structure interaction dynamics of conveying marine riser model subject to shear current

  • Chen, Zheng-Shou;Kim, Wu-Joan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.57-70
    • /
    • 2012
  • This article presents a numerical investigation concerning the effect of two kinds of axially progressing internal flows (namely, upward and downward) on fluid.structure interaction (FSI) dynamics about a marine riser model which is subject to external shear current. The CAE technology behind the current research is a proposed FSI solution, which combines structural analysis software with CFD technology together. Efficiency validation for the CFD software was carried out first. It has been proved that the result from numerical simulations agrees well with the observation from relating model test cases in which the fluidity of internal flow is ignorable. After verifying the numerical code accuracy, simulations are conducted to study the vibration response that attributes to the internal progressive flow. It is found that the existence of internal flow does play an important role in determining the vibration mode (/dominant frequency) and the magnitude of instantaneous vibration amplitude. Since asymmetric curvature along the riser span emerges in the case of external shear current, the centrifugal and Coriolis accelerations owing to up- and downward internal progressive flows play different roles in determining the fluid.structure interaction response. The discrepancy between them becomes distinct, when the velocity ratio of internal flow against external shear current is relatively high.