• 제목/요약/키워드: Internal electrode

검색결과 279건 처리시간 0.026초

리튬이온 커패시터의 음극도핑 및 전기화학특성 연구 (Study on the Electrochemical Characteristics of Lithium Ion Doping to Cathode for the Lithium Ion Capacitor)

  • 최성욱;박동준;황갑진;유철휘
    • 한국수소및신에너지학회논문집
    • /
    • 제26권5호
    • /
    • pp.416-422
    • /
    • 2015
  • Lithium Ion capacitor (LIC) is a new storage device which combines high power density and high energy density compared to conventional supercapacitors. LIC is capable of storing approximately 5.10 times more energy than conventional EDLCs and also have the benefits of high power and long cycle-life. In this study, LICs are assembled with activated carbon (AC) cathode and pre-doped graphite anode. Cathode material of natural graphite and artificial graphite kinds of MAGE-E3 was selected as the experiment proceeds. Super-P as a conductive agent and PTFE was used as binder, with the graphite: conductive agent: binder of 85: 10: 5 ratio of the negative electrode was prepared. Lithium doping condition of current density of $2mA/cm^2$ to $1mA/cm^2$, and was conducted by varying the doping. Results Analysis of Inductively Coupled Plasma Spectrometer (ICP) was used and a $1mA/cm^2$ current density, $2mA/cm^2$, when more than 1.5% of lithium ions was confirmed that contained. In addition, lithium ion doping to 0.005 V at 10, 20 and $30^{\circ}C$ temperature varying the voltage variation was confirmed, $20^{\circ}C$ cell from the low internal resistance of $4.9{\Omega}$ was confirmed.

강유전체 BiFeO3가 증착된 TiO2 전극을 이용한 염료감응형 태양전지의 효율 향상 (Ferroelectric BiFeO3-coated TiO2 Electrodes for Enhanced Photovoltaic Properties of Dye-sensitized Solar Cells)

  • 주호용;홍수봉;이호상;전지훈;박배호;홍성철;최택집
    • 한국전기전자재료학회논문지
    • /
    • 제26권3호
    • /
    • pp.198-203
    • /
    • 2013
  • Dye-sensitized solar cells (DSSCs) based on titanium dioxide ($TiO_2$) have been extensively studied because of their promising low-cost alternatives to conventional semiconductor based solar cells. DSSCs consist of molecular dye at the interface between a liquid electrolyte and a mesoporous wide-bandgap semiconductor oxide. Most efforts for high conversion efficiencies have focused on dye and liquid electrolytes. However, interface engineering between dye and electrode is also important to reduce recombination and improve efficiency. In this work, for interface engineering, we deposited semiconducting ferroelectric $BiFeO_3$ with bandgap of 2.8 eV on $TiO_2$ nanoparticles and nanotubes. Photovoltaic properties of DSSCs were characterized as a function of thickness of $BiFeO_3$. We showed that ferroelectric $BiFeO_3$-coated $TiO_2$ electrodes enable to increase overall efficiency of DSSCs, which was associated with efficient electron transport due to internal electric field originating from electric polarization. It was suggested that engineering the dye-$TiO_2$ interface using ferroelectric materials as inorganic modifiers can be key parameter for enhanced photovoltaic performance of the cell.

Improved Current Source Design to Measure Induced Magnetic Flux Density Distributions in MREIT

  • Oh Tong-In;Cho Young;Hwang Yeon-Kyung;Oh Suk-Hoon;Woo Eung-Je;Lee Soo-Yeol
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권1호
    • /
    • pp.30-37
    • /
    • 2006
  • Injecting currents into an electrically conducting subject, we may measure the induced magnetic flux density distributions using an MRI scanner. The measured data are utilized to reconstruct cross-sectional images of internal conductivity and current density distributions in Magnetic Resonance Electrical Impedance Tomography (MREIT). Injection currents are usually provided in a form of mono-polar or bi-polar pulses synchronized with an MR pulse sequence. Given an MRI scanner performing the MR phase imaging to extract the induced magnetic flux density data, the current source becomes one of the key parts determining the signal-to-noise ratio (SNR) of the measured data. Since this SNR is crucial in determining the quality of reconstructed MREIT images, special care must be given in the design and implementation of the current source. This paper describes a current source design for MREIT with features including interleaved current injection, arbitrary current waveform, electrode switching to discharge any stored charge from previous current injections, optical isolation from an MR spectrometer and PC, precise current injection timing control synchronized with any MR pulse sequence, and versatile PC control program. The performance of the current source was verified using a 3T MRI scanner and saline phantoms.

Technical Evaluation of Engineering Model of Ultra-Small Transmitter Mounted on Sweetpotato Hornworm

  • Nakajima, Isao;Muraki, Yoshiya;Mitsuhashi, Kokuryo;Juzoji, Hiroshi;Yagi, Yukako
    • Journal of Multimedia Information System
    • /
    • 제9권2호
    • /
    • pp.145-154
    • /
    • 2022
  • The authors are making a prototype flexible board of a radio-frequency transmitter for measuring an electromyogram (EMG) of a flying moth and plan to apply for an experimental station license from the Ministry of Internal Affairs and Communications of Japan in the summer of 2022. The goal is to create a continuous low-dose exposure standard that incorporates scientific and physiological functional assessments to replace the current standard based on lethal dose 50. This paper describes the technical evaluation of the hardware. The signal of a bipolar EMG electrode is amplified by an operational amplifier. This potential is added to a voltage-controlled crystal oscillator (27 MHz, bandwidth: 4 kHz), frequency-converted, and transmitted from an antenna about 10 cm long (diameter: 0.03 mm). The power source is a 1.55-V wristwatch battery that has a total weight of about 0.3 g (one dry battery and analog circuit) and an expected operating time of 20 minutes. The output power is -7 dBm and the effective isotropic radiated power is -40 dBm. The signal is received by a dual-whip antenna (2.15 dBi) at a distance of about 100 m from the moth. The link margin of the communication circuit is above 30 dB within 100 m. The concepts of this hardware and the measurement data are presented in this paper. This will be the first biological data transmission from a moth with an official license. In future, this telemetry system will improve the detection of physiological abnormalities of moths.

교류 흐름 방식을 적용한 암모니아 공급 고체산화물 연료전지의 성능 분석 (Performance Analysis of Ammonia-Fed Solid Oxide Fuel Cell Using Alternating Flow)

  • 쿠엔;잡반티엔;이동근;이선엽;배용균;안국영;김영상
    • 한국수소및신에너지학회논문집
    • /
    • 제33권5호
    • /
    • pp.557-565
    • /
    • 2022
  • The effect of flow configuration in ammonia-fed solid oxide fuel cell are investigated by using a three-dimensional numerical model. Typical flow configurations including co-flow and counter-flow are considered. The ammonia is directly fed into the stack without any external reforming process, resulting in an internal decomposition of NH3 in the anode electrode of the stack. The result showed that temperature profile in the case of counter-flow is more uniform than the co-flow configuration. The counter-flow cell, the temperature is highest at the middle of the channel while in the case of co-flow, the temperature is continuously increased and reached maximum value at the outlet area. This leads to a higher averaged current density in counter-flow compared to that of co-flow, about 5%.

Direct Microwave Sintering of Poorly Coupled Ceramics in Electrochemical Devices

  • Amiri, Taghi;Etsell, Thomas H.;Sarkar, Partha
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권3호
    • /
    • pp.390-397
    • /
    • 2022
  • The use of microwaves as the energy source for synthesis and sintering of ceramics offers substantial advantages compared to conventional gas-fired and electric resistance furnaces. Benefits include much shorter processing times and reaching the sintering temperature more quickly, resulting in superior final product quality. Most oxide ceramics poorly interact with microwave irradiation at low temperatures; thus, a more complex setup including a susceptor is needed, which makes the whole process very complicated. This investigation pursued a new approach, which enabled us to use microwave irradiation directly in poorly coupled oxides. In many solid-state electrochemical devices, the support is either metal or can be reduced to metal. Metal powders in the support can act as an internal susceptor and heat the entire cell. Then sufficient interaction of microwave irradiation and ceramic material can occur as the sample temperature increases. This microwave heating and exothermic reaction of oxidation of the support can sinter the ceramic very efficiently without any external susceptor. In this study, yttria stabilized zirconia (YSZ) and a Ni-YSZ cermet support were used as an example. The cermet was used as the support, and a YSZ electrolyte was coated and sintered directly using microwave irradiation without the use of any susceptor. The results were compared to a similar cell prepared using a conventional electric furnace. The leakage test and full cell power measurement results revealed a fully leak-free electrolyte. Scanning electron microscopy and density measurements show that microwave sintered samples have lower open porosity in the electrode support than conventional heat treatment. This technique offers an efficient way to directly use microwave irradiation to sinter thin film ceramics without a susceptor.

암모니아 공급 고체산화물 연료전지의 1D 반응 모델 (1D Kinetics Model of NH3-Fed Solid Oxide Fuel Cell)

  • 잡반티엔;쿠엔;안국영;배용균;이선엽;김영상
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.723-732
    • /
    • 2022
  • Cracking ammonia inside solid oxide fuel cell (SOFC) stack is a compact and simple way. To prevent sharp temperature fluctuation and increase cell efficiency, the decomposition reaction should be spread on whole cell area. This leading to a question that, how does anode thickness affect the conversion rate of ammonia and the cell voltage? Since the 0D model of SOFC is useful for system level simulation, how accurate is it to use equilibrium solver for internal ammonia cracking reaction? The 1D model of ammonia fed SOFC was used to simulate the diffusion and reaction of ammonia inside the anode electrode, then the partial pressure of hydrogen and steam at triple phase boundary was used for cell voltage calculation. The result shows that, the ammonia conversion rate increases and reaches saturated value as anode thickness increase, and the saturated thickness is bigger for lower operating temperature. The similar cell voltage between 1D and 0D models can be reached with NH3 conversion rate above 90%. The 0D model and 1D model of SOFC showed similar conversion rate at temperature over 750℃.

The Investigation of Treatment of Pistachio Processing Industrial Wastewater by Electrochemical Methods in Terms of Chemical Oxygen Demand and Total Phenol Removal

  • Alper Erdem Yilmaz;Baybars Ali Fil;Murat Tolga Yilmaz;Serkan Bayar;Zuhal Koksal
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.178-189
    • /
    • 2024
  • This work aims to investigate the efficiency of electrocoagulation (EC) of pistachio processing industrial wastewater (PPIW) using the continuous EC process. The tubular reactor made of stainless steel with an internal diameter of 60 mm was used as a cathode electrode. The effect of some parameters was examined on the removal of chemical oxygen demand (COD) and total phenols (TP) removal efficiency. The influences of the initial pH of wastewater (from 4 to 8), flow rate (from 25 to 125 mL/min), current density (from 7 to 21 mA/cm2), and supporting electrolyte type (NaCl, NaNO3, and Na2SO4), supporting electrolyte concentration (from 10 to 100 mg/L NaCl) on removal efficiency were investigated to determine the best experimental conditions. The examination of the physico-chemical parameters during the EC treatment showed that the best removal efficiency was obtained under conditions where the flow rate was 25 mL/min (20 min reaction time), the pH value was 5.2, and the current density was 21 mA/cm2 has set. Under these experimental conditions, COD and TP removal efficiency were found to be 75% and 97%, respectively, while energy consumption was 18.5 kW h/m3. The study results show that the EC can be applied to PPIW pre-treatment.

Experimental study on solidification of uranium tailings by microbial grouting combined with electroosmosis

  • Jinxiang Deng;Mengjie Li;Yakun Tian;Lingling Wu;Lin Hu;Zhijun Zhang;Huaimiao Zheng
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4527-4542
    • /
    • 2023
  • The present microbial reinforcement of rock and soil exhibits limitations, such as uneven reinforcement effectiveness and low calcium carbonate generation rate, resulting in limited solidification strength. This study introduces electroosmosis as a standard microbial grouting reinforcement technique and investigates its solidification effects on microbial-reinforced uranium tailings. The most effective electroosmosis effect on uranium tailings occurs under a potential gradient of 1.25 V/cm. The findings indicate that a weak electric field can effectively promote microbial growth and biological activity and accelerate bacterial metabolism. The largest calcium carbonate production occurred under the gradient of 0.5 V/cm, featuring a good crystal combination and the best cementation effect. Staged electroosmosis and electrode conversion efficiently drive the migration of anions and cations. Under electroosmosis, the cohesion of uranium tailings reinforced by microorganisms increased by 37.3% and 64.8% compared to those reinforced by common microorganisms and undisturbed uranium tailings, respectively. The internal friction angle is also improved, significantly enhancing the uniformity of reinforcement and a denser and stronger microscopic structure. This research demonstrates that MICP technology enhances the solidification effects and uniformity of uranium tailings, providing a novel approach to maintaining the safety and stability of uranium tailings dams.

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1992년도 춘계학술대회
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF