• 제목/요약/키워드: Internal electrode

검색결과 278건 처리시간 0.029초

Direct Imaging of Polarization-induced Charge Distribution and Domain Switching using TEM

  • 오상호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.99-99
    • /
    • 2013
  • In this talk, I will present two research works in progress, which are: i) mapping of piezoelectric polarization and associated charge density distribution in the heteroepitaxial InGaN/GaN multi-quantum well (MQW) structure of a light emitting diode (LED) by using inline electron holography and ii) in-situ observation of the polarization switching process of an ferroelectric Pb(Zr1-x,Tix)O3 (PZT) thin film capacitor under an applied electric field in transmission electron microscope (TEM). In the first part, I will show that strain as well as total charge density distributions can be mapped quantitatively across all the functional layers constituting a LED, including n-type GaN, InGaN/GaN MQWs, and p-type GaN with sub-nm spatial resolution (~0.8 nm) by using inline electron holography. The experimentally obtained strain maps were verified by comparison with finite element method simulations and confirmed that not only InGaN QWs (2.5 nm in thickness) but also GaN QBs (10 nm in thickness) in the MQW structure are strained complementary to accommodate the lattice misfit strain. Because of this complementary strain of GaN QBs, the strain gradient and also (piezoelectric) polarization gradient across the MQW changes more steeply than expected, resulting in more polarization charge density at the MQW interfaces than the typically expected value from the spontaneous polarization mismatch alone. By quantitative and comparative analysis of the total charge density map with the polarization charge map, we can clarify what extent of the polarization charges are compensated by the electrons supplied from the n-doped GaN QBs. Comparison with the simulated energy band diagrams with various screening parameters show that only 60% of the net polarization charges are compensated by the electrons from the GaN QBs, which results in the internal field of ~2.0 MV cm-1 across each pair of GaN/InGaN of the MQW structure. In the second part of my talk, I will present in-situ observations of the polarization switching process of a planar Ni/PZT/SrRuO3 capacitor using TEM. We observed the preferential, but asymmetric, nucleation and forward growth of switched c-domains at the PZT/electrode interfaces arising from the built-in electric field beneath each interface. The subsequent sideways growth was inhibited by the depolarization field due to the imperfect charge compensation at the counter electrode and preexisting a-domain walls, leading to asymmetric switching. It was found that the preexisting a-domains split into fine a- and c-domains constituting a $90^{\circ}$ stripe domain pattern during the $180^{\circ}$ polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes.

  • PDF

미세 패턴화된 리튬금속 전극의 Vinylene Carbonate 첨가제 도입에 따른 전기화학 특성에 관한 연구 (Effect of Vinylene Carbonate as an Electrolyte Additive on the Electrochemical Properties of Micro-Patterned Lithium Metal Anode)

  • 진다희;박주남;;윤별희;유명현;이용민
    • 전기화학회지
    • /
    • 제22권2호
    • /
    • pp.69-78
    • /
    • 2019
  • 리튬 금속 음극은 낮은 환원 전위, 고에너지 밀도로 인해 흑연을 대체할 차세대 음극재로 재조명 받고 있다. 하지만, 충방전시 리튬 금속 표면에서의 반복적인 산화/환원 반응에 의해 리튬 덴드라이트가 형성되며 이로 인해 수명특성이 급격하게 저하되고 더 나아가 내부 단락(Internal Short-circuit)과 같은 안전성 문제로 인해 상용화되기에는 어려운 실정이다. 이를 해결하기 위해 본 연구 그룹에서는 리튬 금속에 미세 패턴을 형성하여 전류 밀도를 제어함으로써 덴드라이트 형성을 제어하였으나, 고전류밀도에서는 리튬 덴드라이트의 형성을 완벽하게 제어할 수는 없었다. 본 연구에서는 미세 패턴화된 리튬 금속 전극에 전해질 첨가제 Vinylene Carbonate(VC)를 도입하여 고율 충방전 시 미세 패턴화된 리튬 금속 전극의 덴드라이트 형성 억제를 극대화하고자 하였다. 미세 패턴화된 리튬 금속 전극과 VC 첨가제의 시너지 효과로 인해 높은 전류 밀도에서의 리튬 덴드라이트가 비교적 치밀하게 형성되는 것을 확인할 수 있었다. 이로 인해 300사이클 동안 88.3%의 용량유지율을 보였으며, 기존의 미세 패턴화된 리튬 금속 전극에 대비하여 수명특성이 약 6배 이상 향상된 것을 확인할 수 있었다.

열전지용 고에너지 밀도 리튬 음극 제조 및 이의 전기화학적 특성 (Preparation of High Energy Density Lithium Anode for Thermal Batteries and Electrochemical Properties Thereof)

  • 임채남;유혜련;윤현기;조장현
    • 한국전기전자재료학회논문지
    • /
    • 제35권4호
    • /
    • pp.398-406
    • /
    • 2022
  • In order to increase the electrochemical performance of thermal battery anode, LIFT anode having the same weight but a larger lithium content in electrodes was fabricated by mixing lithium, iron and titanium. By applying these electrodes, a single cell and a thermal battery were prepared, and the effect of LIFT anode on electrochemical performance was evaluated. The LIFT-applied single cell presented a better cell performance than LIFe-applied single cell at 500℃ and 550℃. The discharge performance of LIFT-applied single cell, which included the operating time (787s), specific capacity (1,683 Asg-1), and electrode utilization (80.7%), was improved collectively compared to the LIFe applied single cell (736s, 1,245 As g-1, and 74.6%) at 500℃. As the discharge progressed, the internal resistance of LIFT anode decreased, because the lithium migration path was formed due to the presence of large titanium particles among iron particles. These results were analyzed in terms of the microstructure of electrode using SEM. Energy density of LIFT-applied single cell also increased by 10% to 142.1 Wh kg-1 compared to that of LIFe-applied single cell (127.4 Wh kg-1). In addition, the LIFT-applied single cell presented a stable discharge performance for 6,500s without a short circuit which could occur by molten lithium under an open circuit voltage condition with a high pressure (4 kgf cm-2). As observed in the high temperature thermal battery performance tests, the voltage and specific capacity of LIFT-applied thermal battery are superior to those of LIFe-applied thermal batteries, indicating that the energy density of LIFT-applied thermal batteries should remarkably increase.

스파크플러그 변화에 따른 가스 엔진 성능 변화 (Effects of Spark Plug Changes on Performance of an SI Engine Fueled by Gaseous Fuel)

  • 이선엽
    • 한국가스학회지
    • /
    • 제17권6호
    • /
    • pp.27-32
    • /
    • 2013
  • 바이오가스, 매립가스와 같은 신재생 가스 연료는 Biomass, 유기성 폐기물 등으로부터 얻을 수 있기 때문에 대기 중의 이산화탄소를 증가시키지 않고 재순환시키는 탄소중립적인 특성이 있어 지구온난화에 대응할 수 있는 장점이 있다. 따라서 다량의 불활성가스로 인한 저발열량, 원료 및 공정에 따른 연료조성 변화 등의 단점에도 불구하고 이를 엔진에 적용하여 에너지를 생산하고자 하는 노력이 계속되어왔다. 이중에서도 연료조성의 변화는 엔진 성능에 큰 영향을 미칠 수 있기 때문에 이에 대한 연구가 필요한 실정이다. 따라서 이번 연구에서는 신재생가스연료에 포함된 불활성가스의 양을 변화시켜 연료 조성 변화를 모사하고 이를 엔진의 연료로 사용함으로써 연료 조성의 변화가 엔진 성능 및 배기배출 특성에 주는 영향을 파악하였다. 또한 엔진 효율 및 배기 성능을 향상시키기 위한 방안에 하나로 보다 긴 전극을 갖는 스파크 플러그를 적용하였으며 그 결과를 기존의 Base 스파크 플러그 시험 결과와 비교하였다.

Full Parametric Impedance Analysis of Photoelectrochemical Cells: Case of a TiO2 Photoanode

  • Nguyen, Hung Tai;Tran, Thi Lan;Nguyen, Dang Thanh;Shin, Eui-Chol;Kang, Soon-Hyung;Lee, Jong-Sook
    • 한국세라믹학회지
    • /
    • 제55권3호
    • /
    • pp.244-260
    • /
    • 2018
  • Issues in the electrical characterization of semiconducting photoanodes in a photoelectrochemical (PEC) cell, such as the cell geometry dependence, scan rate dependence in DC measurements, and the frequency dependence in AC measurements, are addressed, using the example of a $TiO_2$ photoanode. Contrary to conventional constant phase element (CPE) modeling, the capacitive behavior associated with Mott-Schottky (MS) response was successfully modeled by a Havriliak-Negami (HN) capacitance function-which allowed the determination of frequency-independent Schottky capacitance parameters to be explained by a trapping mechanism. Additional polarization can be successfully described by the parallel connection of a Bisquert transmission line (TL) model for the diffusion-recombination process in the nanostructured $TiO_2$ electrode. Instead of shunt CPEs generally employed for the non-ideal TL feature, TL models with ideal shunt capacitors can describe the experimental data in the presence of an infinite-length Warburg element as internal interfacial impedance - a characteristic suggested to be a generic feature of many electrochemical cells. Fully parametrized impedance spectra finally allow in-depth physicochemical interpretations.

Li[Ni0.8Co0.15Al0.05]O2 전극의 공침 조건을 통한 구조적 변화와 전기적 특성의 향상 고찰 (The Study on Structural Change and Improvement of Electrochemical Properties by Co-precipitation Condition of Li[Ni0.8Co0.15Al0.05]O2 Electrode)

  • 임정빈;손종태
    • 전기화학회지
    • /
    • 제14권2호
    • /
    • pp.98-103
    • /
    • 2011
  • 본 연구에서는 리튬 이차 전지의 양극 재료인 $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$을 공침법(co-precipitation)을 활용하여 성공적으로 합성하였다. 이때 $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$의 금속염 농도를 실험 변수로 하여 합성 조건을 변화 시키면서 금속염 농도 변화로 인한 전지 특성의 영향을 분석하였다. SEM(scanning electron microscope)과 XRD (X-Ray Diffraction) 분석결과 금속염의 농도(2몰/L)가 높을 경우 분말의 균일성과 구조의 결정성이 떨어져 전지 특성이 저하되는 현상이 발생하였다. 균일성과 결정성을 향상시키기 위하여 금속염의 농도(1몰/L)를 줄여 합성 한 결과 입도의 미분이 적고 균일성이 및 구조적 결정성이 증가됨을 확인하였다. 또한 충/방전 용량, C-rate, 사이클 등 전기화학적 특성에서도 상대적으로 우수한 특성을 보였다. 이러한 측정 결과를 바탕으로 $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ 물질의 금속염 농도에 따른 영향을 종합적으로 고찰하였다.

황동과 금형강의 와이어 컷 방전가공을 통한 가공특성 평가 (Evaluation of Machining Characteristics through Wire-Cut EDM of Brass and SKD 11)

  • 김정석
    • 한국생산제조학회지
    • /
    • 제6권4호
    • /
    • pp.130-137
    • /
    • 1997
  • The demand for wire-cut EDM is increasing rapidly in the die and tool making industry. In this study machining characteristics such as machining rate, surface roughness, hand drum form and hardness of machined material are investigated experimentally under the conditions varing pulse on time, pulse off time, peak voltage, wire tension after fixing other conditions in SKD 11 and brass and brass workpiece. It was found that various operating conditions had significant influences on machining characteristics. But the hardness of workpiece was uneffected by operating conditions. Also it was obtained experimentally that brass workpeice had better machinability than SKD 11 one.dition according to the current(Ip) in an electric spark machine : 1) Electrode is utilized Cu and Graphite. 2) Work piece is used the material of carbon steel. The condition of experiment is : 1) Current is varied 0.7(A) to 50(A) and the time of electric discharging to work piece in each time is 30(min) to 60(min). 2) After the upper side of work piece was measured in radius(5$\mu$m) of stylus analyzed the surface roughness to ade the table and graph of Rmax by yielding data. 3) Electro wear ratio is : \circled1Cooper was measured ex-machining and post-machining by the electronic balance. \circled2The ex-machining of graphite measured by it, the post-machining was found the data from volume $\times$specific gravity and analyzed to made its table and graph on ground the data. 4) In order to keep the accuracy of voltage affected to the work piece was equipped with the A.V. R and the memory scope was sticked to the electric spark machine. 5) In order to preserve the precision of current, to get rid of the noise occured by internal resistance of electric spark machine and to force injecting for the discharge fluid , it made the fixed table for a work piece to minimize the work error by means of one's failure during the electric discharging.

  • PDF

미생물연료전지에서 공급기질에 따른 전기발생량 및 미생물 군집구조 비교 (Comparison of Electricity Generation and Microbial Community Structure in MFCs Fed with Different Substrates)

  • 유재철;조해인;조순자;이태호
    • 한국물환경학회지
    • /
    • 제26권4호
    • /
    • pp.608-613
    • /
    • 2010
  • Electricity generation of microbial fuel cells (MFC) is greatly affected by the kind of feed substrates because substrates would change microbial community of electrochemically active bacteria (EAB) able to transfer electrons to electrode. The effect of different substrates on electricity generation and microbial community of MFC was investigated. Two-chamber MFCs fed with acetate (A-MFC), butyrate (B-MFC), propionate (P-MFC), glucose (G-MFC) and a mixture (M-MFC) of the 4 substrates (acetate : butyrate : propionate : glucose = 1 : 1 : 1 : 1 as $COD_{Cr}$ base) were operated under continuous mode. The maximum power density was found from the M-MFC ($190W/m^3$) which showed the lowest internal resistance ($89{\Omega}$). The maximum power densities of the pure substrates feed MFCs were in order of A-MFC ($25W/m^3$), P-MFC ($21W/m^3$), B-MFC ($20W/m^3$) and G-MFC ($9W/m^3$). In DGGE analysis, the microbial community structure in suspension was quite different from each others depending on feed substrates, while the community structure in the biofilm was relatively similar regardless of the substrates. This result suggests that the feed substrates would affect the microbial community of suspended growth bacteria than attached growth bacteria resulting in difference of electricity generation in MFCs.

파이버 레이저 투명 전극 식각을 통한 염료감응형 태양전지 효율 상승 연구 (A Study on the Improvement of the Dye-sensitized Solar Cell by the Fiber Laser Transparent Conductive Electrode Scribing Technology)

  • 손민규;서현웅;신인영;김진경;최진호;최석원;김희제
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2218-2224
    • /
    • 2010
  • Dye-sensitized solar cell (DSC) is a promising alternative solar cell to the conventional silicon solar cell due to several advantages. Development of large scale module is necessary to commercialize the DSC in the near future. A scribing technology of the transparent conductive oxide (TCO) is one of the important technologies on the fabrication of DSC module. A quality of the scribed line on the TCO has a decisive effect on the efficiency of DSC module. Among several scribing technologies, the fiber laser is a suitable for scribing the TCO more precisely and accurately because of their own characteristics. In this study, we try to improve the quality of the TCO scribed line by using the fiber laser. Consequently, the operating parameter of fiber laser is optimized to get the TCO scribed line with good quality. And the fiber laser scribing technology of the TCO is applied to the fabrication of the DSC with optimal operating parameter, operating current 3900mA. As a result, the current density and fill factor are improved and the total efficiency is increased because the internal resistances of DSC such as TCO sheet resistance and the resistance concerned to the electron movement in the $TiO_2$ are reduced. This is analyzed by the electrochemistry impedance spectroscopy (EIS) and the equivalent circuit model of the DSC.

GIS 진단시스템의 평가를 위한 PD 모의 펄스발생기 개발에 관한 연구 (A Study on the Development of PD Simulation Pulse Generator for Evaluation of GIS Diagnosis System)

  • 김성주;장석훈;조국희
    • 한국안전학회지
    • /
    • 제33권2호
    • /
    • pp.21-27
    • /
    • 2018
  • The expansion and stable operation of electric power facilities are important factors with development of industrial facilities in modern society. In high-voltage equipment such as GIS, the insulation characteristics may be deterioated by environment-friendly gas adaption and miniaturization. There is also the possibility of accidents due to insulation breakdown due to the deterioration of power facilities. Therefore, it is necessary to extend the diagnosis system to continuously monitor the danger signals of these power equipment and to prevent accidents. Most of the internal defects in the GIS system are conductive particles, floating electrode defects, protrusion defects, and the like. In this case, a partial discharge phenomenon is accompanied. These partial discharge signals occur irregularly and various noise signals are included in the field, so it is difficult to evaluate the reliability in the development of the diagnostic system. In this paper, a study was made on equipment capable of generating a partial discharge simulated signal that can be adjusted in size and frequency to be applied to a diagnostic device by electromagnetic wave detection method. The PD simulated pulse generator consists of a user interface module, a high-voltage charging module, a pulse forming circuit, a voltage sensor and an embedded controller. In order to simulate the partial discharge phenomenon similar to the actual GIS, a discharge cell was designed and fabricated. The application of the prototype pulse generator to the commercialized PD diagnosis module confirmed that it can be used to evaluate the performance of the diagnostic device. It can be used for the development of GIS diagnosis system and performance verification for reliability evaluation.