• Title/Summary/Keyword: Internal dose measurement

Search Result 56, Processing Time 0.029 seconds

Verification of Harmonization of Dose Assessment Results According to Internal Exposure Scenarios

  • Kim, Bong-Gi;Ha, Wi-Ho;Kwon, Tae-Eun;Lee, Jun-Ho;Jung, Kyu-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.143-153
    • /
    • 2018
  • Background: The determination of the amount of radionuclides and internal dose for the worker who may have intake of radionuclides results in a variation due to uncertainty of measurement data and ingestion information. As a result of this, it is possible that for the same internal exposure scenario assessors could make considerably different estimation of internal dose. In order to reduce this difference, internal exposure scenarios for nuclear facilities were developed, and intercomparison were made to determine the harmonization of dose assessment results among the assessors. Materials and Methods: Seven cases on internal exposures incidents that have occurred or may occur were prepared by referring to the intercomparison excercise scenario that NRC and IAEA have carried out. Based on this, 16 nuclear facilities concerned with internal exposure in Korea were asked to evaluate the scenarios. Each result was statistically determined according to the harmonization discrimination criteria developed by IDEAS/IAEA. Results and Discussion: The results were evaluated as having no outliers in all 7 cases. However, the distribution of the results was spread by various causes. They can be divided into two wide categories. The first one is the distribution of the results according to the assumption of the intake factors and the evaluation factors. The second one is distribution due to misapplication of calculation method and factors related to internal exposure. Conclusion: In order to satisfy the harmonization criteria and accuracy of the internal exposure dose evaluation, it is necessary that exact guidelines should be set on low dose, and various intercomparison cases also be needed including high dose exposure as well as the specialized education. The aim of the blind test is to make harmonization evaluation, but it will also contribute to securing the expertise and high quality of dose evaluation data through the discussion among the participants.

Revisoin of the Daily Dose of Pinelliae Tuber in Treatise on Cold Damage Diseases (≪상한론≫ 탕제(湯劑)에서 반하(半夏)의 일일 복용량 수정)

  • Kim, In-Rak
    • The Korea Journal of Herbology
    • /
    • v.35 no.1
    • /
    • pp.19-25
    • /
    • 2020
  • Objects : The daily dose of Pinelliae Tuber in ≪Treatise on Cold Damage Diseases≫ is half seung in volume, two and half ryang in weight, and fifteen in total number. But the daily dose should be a whole number. So I found out the background of this setting and correct solution. Methods : I searched Classics of Traditional Medicine, found out the background of the daily dose setting, solution. Results : The daily dose of Pinelliae tuber in ≪Hangdi's Internal Classic Miraculous Pivot≫, ≪Bohenggyuljangbuyongyakbeobyo≫ is half seung. ≪Treatise on Cold Dameage Diseases≫ followed the same daily dose of that because it referred to these books. In ≪Synopsis of Prescription of the Golden Chamber≫, the daily dose of that is half seung, one or two seung. The half seung of the Pinelliae Tuber is thirty three mL, but the diameter is 1~1.5 cm that accurate measurement by volume is difficult. The daily dose by weight is correct considering the unity of marking of the daily dose, accuracy of measurement, the fact that Pinelliae Tuber is currently distributed by cutting. So, two ryang is correct which is thirteen gram. Conclusions : Considering the traditionality, the convenience of measurement, the daily dose of Pinelliae Tuber in the ≪Treatise on Cold Damage Diseases≫ is half seung, but considering the unity, accuracy, current state of distribution, it is correct that the daily dose of it is two ryang. It corresponds to thirteen gram.

The Comparative Analysis of External Dose Reconstruction in EPID and Internal Dose Measurement Using Monte Carlo Simulation (몬테 카를로 전산모사를 통한 EPID의 외부적 선량 재구성과 내부 선량 계측과의 비교 및 분석)

  • Jung, Joo-Young;Yoon, Do-Kun;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.253-258
    • /
    • 2013
  • The purpose of this study is to evaluate and analyze the relationship between the external radiation dose reconstruction which is transmitted from the patient who receives radiation treatment through electronic portal imaging device (EPID) and the internal dose derived from the Monte Carlo simulation. As a comparative analysis of the two cases, it is performed to provide a basic indicator for similar studies. The geometric information of the experiment and that of the radiation source were entered into Monte Carlo n-particle (MCNPX) which is the computer simulation tool and to derive the EPID images, a tally card in MCNPX was used for visualizing and the imaging of the dose information. We set to source to surface distance (SSD) 100 cm for internal measurement and EPID. And the water phantom was set to be 100 cm of the source to surface distance (SSD) for the internal measurement and EPID was set to 90 cm of SSD which is 10 cm below. The internal dose was collected from the water phantom by using mesh tally function in MCNPX, accumulated dose data was acquired by four-portal beam exposures. At the same time, after getting the dose which had been passed through water phantom, dose reconstruction was performed using back-projection method. In order to analyze about two cases, we compared the penetrated dose by calibration of itself with the absorbed one. We also evaluated the reconstructed dose using EPID and partially accumulated (overlapped) dose in water phantom by four-portal beam exposures. The sum dose data of two cases were calculated as each 3.4580 MeV/g (absorbed dose in water) and 3.4354 MeV/g (EPID reconstruction). The result of sum dose match from two cases shows good agreement with 0.6536% dose error.

Evaluation of Dynamic Delivery Quality Assurance Process for Internal Target Volume Based RapidArc

  • Song, Ju-Young
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.181-189
    • /
    • 2017
  • The conventional delivery quality assurance (DQA) process for RapidArc (Varian Medical Systems, Palo Alto, USA), has the limitation that it measures and analyzes the dose in a phantom material and cannot analyze the dosimetric changes under the motional organ condition. In this study, a DQA method was designed to overcome the limitations of the conventional DQA process for internal target volume (ITV) based RapidArc. The dynamic DQA measurement device was designed with a moving phantom that can simulate variable target motions. The dose distribution in the real volume of the target and organ-at-risk (OAR)s were reconstructed using 3DVH with the ArcCHECK (SunNuclear, Melbourne, USA) measurement data under the dynamic condition. A total of 10 ITV-based RapidArc plans for liver-cancer patients were analyzed with the designed dynamic DQA process. The average pass rate of gamma evaluation was $81.55{\pm}9.48%$ when the DQA dose was measured in the respiratory moving condition of the patient. Appropriate method was applied to correct the effect of moving phantom structures in the dose calculation, and DVH data of the real volume of target and OARs were created with the recalculated dose by the 3DVH program. We confirmed the valid dose coverage of a real target volume in the ITV-based RapidArc. The variable difference of the DVH of the OARs showed that dose variation can occur differently according to the location, shape, size and motion range of the target. The DQA process devised in this study can effectively evaluate the DVH of the real volume of the target and OARs in a respiratory moving condition in addition to the simple verification of the accuracy of the treatment machine. This can be helpful to predict the prognosis of treatment by the accurate dose analysis in the real target and OARs.

Development of a Monte Carlo Simulation Code (CALEFF) for Calibrating Thyroid Internal Dose Measurement and Detection Efficiency Calculation (갑상선 내부피폭선량 측정치 보정을 위한 몬테카를로 모의실험 코드 (CALEFF) 개발 및 검출효율 계산)

  • Ahn, Ki-Soo;Cho1, Hyo-Sung
    • Journal of radiological science and technology
    • /
    • v.28 no.2
    • /
    • pp.117-122
    • /
    • 2005
  • According to the Para. 5 of Art 2 of the Korean Nuclear Safety Regulations, which was revised in 1999, internal dose assessment as well as external one should be performed by law for employees at a nuclear power plant from 2003, and their estimate errors should also be within 50%. Thus, more accurate internal dosimetry becomes important. Corresponding to such regulation revision, we are developing a more accurate thyroid-uptake internal dosimetric system and have developed a Monte Carlo simulation code, the so-called CALEFF, to calculate the detection efficiency of the dosimetric system. In this paper, we calculated detection efficiencies with various test conditions by using the CALEFF code and discussed their characteristics. We may use the detection efficiency calculated by the code in calibrating the thyroid internal dose from measured data.

  • PDF

Dose perturbation measurements during the liver treatment with internal organ motion: Mathematical modeling and Experimental simulation (호흡에 의한 내부 움직임의 영향이 있는 간에서의 실험적 선량 측정)

  • Chung, Jin-Bum;Kim, Yon-Lae;Chung, Won-Kyun;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.115-118
    • /
    • 2004
  • Respiratory motion in the thorax and abdomen is an important limiting factor in high-precision radiation therapy. The lung tumor and tumor(pancreas, stomach) in abdomen therefore are internal motion due to breathing. We will perform to measurement of dose distributions for these moving tumors. In preliminary study, we investigated displacement of moving tumor such as liver, lung tumor in abdomen with previously reported papers. With reference data, internal movements of tumor are displayed with phantom and moving control device(MCD), which appear three dimension (3-D) motion such as x, y and z axis. These devices are used to access dose delivered in tumor with and without internal motion. The MCD and phantom were used to evaluate a delivered dose under similar condition, although there are not same internal tumor motion. In future, we will obtain the exact evaluation of dose if improved in programed software of moving control device and measure precise internal motion using image modality such as fluoroscopy, simulator in based on this study.

  • PDF

Dosimetric Analysis on the Effect of Target Motion in the Delivery of Conventional IMRT, RapidArc and Tomotherapy

  • Song, Ju-Young
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.164-170
    • /
    • 2017
  • One of the methods to consider the effect of respiratory motion of a tumor target in radiotherapy is to establish a treatment plan with the internal target volume (ITV) created based on an accurate analysis of the target motion displacement. When this method is applied to intensity modulated radiotherapy (IMRT), it is expected to yield a different treatment dose distribution under the motion condition according to the IMRT method. In this study, we prepared ITV-based IMRT plans with conventional IMRT using fixed gantry angle beams, RapidArc using volumetric modulated arc therapy, and tomotherapy using helical therapy. Then, the variation in dose distribution caused by the target motion was analyzed by the dose measurement in the actual motion condition. A delivery quality assurance plan was prepared for the established IMRT plan and the dose distribution in the actual motion condition was measured and analyzed using a two-dimensional diode detector placed on a moving phantom capable of simulating breathing movements. The dose measurement was performed considering only a uniform target shape and motion in the superior-inferior (SI) direction. In this condition, it was confirmed that the error of the dose distribution due to the target motion is minimum in tomotherapy. This is thought to be due to the characteristic of tomotherapy that treats the target sequentially by dividing it into several slices. When the target shape is uniform and the main target motion direction is SI, it is considered that tomotherapy for the ITV-based IMRT method has a characteristic which can reduce the dose difference compared with the plan dose under the target motion condition.

The Measurement of Spatial Dose Rate by Gravity Ventilation after Technegas Scanning (Technegas 스캐닝 후 중력환기에 의한 공간선량율 측정)

  • Kim, Sung-Bin;Won, Do-Yeon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.667-674
    • /
    • 2019
  • Because examination with technegas produces images through simple diffusion accumulation, the examination room can become contaminated after scan. Therefore, radiation workers and patients awaiting examination will be affected by internal exposure from technegas inhalation. Before and after gravity ventilation, I am trying to find a way to reduce the exposure dose of waiting patients according to a comparative analysis of horizontal spatial dose rates over time. Spatial dose ratio were measured for 10 minutes from various distances and angles around ventilator's location before and after gravity ventilation. Then, mean values, standard deviation and reduction ratio were calculated. The highest reduction rate of gravity ventilation was 95.31% and the highest reduction ratio was 1 to 3 minutes. Therefore, the gravity ventilation could reduce the exposure dose of radiologic technologists, waiting patients, patient guardians and nurses. In conclusion, the reduction of the exposure dose during the technegas ventilation study through gravity ventilation will play a role in optimiging the protection and it is in accordance with the recommended reduction of the medical exposure by ICRP 103.

A Study on the Verification and Improvement to Locate and Determine the Radioactive Contamination Using a Whole Body Counter (전신계측기를 이용한 원전종사자 방사성오염 위치확인과 내부방사능 측정개선에 관한 연구)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • Whole body counters (WBCs) are used to monitor radiation workers for internal contamination of radionuclides at domestic nuclear power plants (NPPs). A WBC is a scintillation detector using sodium iodide (NaI) and provides the identification of inhaled radionuclide and the measurement of its internal radioactivity in a short time. However, it is often possible to estimate external contamination as internal contamination due to radionuclides attached to the skin of radiation workers and this leads to an excessively conservative estimation of radioactive contamination. In this study, several experiments using a WBC and the Korean humanoid phantom were performed to suggest the more systematic method of discrimination between external and internal contamination. Furthermore, a WBC geometry experiment was conducted to suggest the optimal WBC geometry in consideration of deposited areas inside the body for dominant radionuclides at NPPs. The procedure of measurement and estimation of internal radioactivity for radiation workers at NPPs was improved on the basis of experimental results. Thus, it is expected to prevent from estimating internal exposure dose conservatively owing to the application of accurate whole body counting program to NPPs.

Assessment of Absorbed Dose of by Organ according to Thyroidal Uptake of Radioactive Iodine for Adult Korean Males (한국성인 남성을 대상으로 한 방사성옥소의 갑상선 섭취율에 따른 각 장기별 흡수선량 평가)

  • Kim, Junghoon;Lim, Changseon;Whang, Jooho
    • Progress in Medical Physics
    • /
    • v.18 no.4
    • /
    • pp.187-193
    • /
    • 2007
  • In an effort to assess the internal absorbed dose of radionuclides that is suitable to Koreans' physiological characteristics, we asked 28 male Koreans to take $^{131}|$ orally, determined the thyroidal uptake and daily urination ratio, and assessed the absorbed dose by organ. As a result, first, 24 hours after administering, the average thyroidal uptake and the daily urination ratio registered 19.70% and 71.12%, respectively. Second, the whole body effective dose according to the thyroidal uptake calculated herein and the existing ICRP-suggested thyroidal uptake of 30% offered 1.464E-08 Sv and 2.189E-08 Sv, respectively, showing a 1.5 times difference. To evaluate the quantity of the absorbed dose of radioactive iodine, we can better reduce the error in assessing the body exposure dose by conducting measurement according to human races rather than depending on the existing ICRP data.

  • PDF