• Title/Summary/Keyword: Internal cooling

Search Result 431, Processing Time 0.028 seconds

A Study on Optimization of Vacuum Glazing Encapsulating Process using Frit inside a Vacuum Chamber (진공챔버 내 프리트 이용 진공유리 봉지공정 최적화에 관한 연구)

  • Park, Sang Jun;Lee, Young Lim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.567-572
    • /
    • 2013
  • In houses that use heating and cooling system, most of heat loss occurs through the windows, so that low-E glass, double-layered glass, and vacuum glazing are used to minimize the heat loss. In this paper, an encapsulating process that is a final process in manufacturing the vacuum glazing has been studied, and bonding in a vacuum chamber rather than atmospheric bonding was considered. For the efficiency of the encapsulating process, frit-melting temperature and bonding time were optimized with heater temperature, and the glass preheating temperature was optimized to prevent glass breakage due to thermal stress. Thus the vacuum glass was successfully manufactured based on these results and heat transmission coefficient measured was about $5.7W/m^2K$ which indicates that the internal pressure of the vacuum glazing is $10^{-2}$ torr.

Performance analysis of R404A refrigeration system using R744 as secondary refrigerant (R744를 2차냉매로 사용하는 R404A용 냉동시스템의 성능 분석)

  • Oh, H.K.;Son, C.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.24-29
    • /
    • 2012
  • In this paper, an analysis on performance and exergy of R404A refrigeration system using R744 secondary refrigerant was performed numerically to optimize the design for the operating parameters. The operating parameters considered in this study include subcooling and superheating degree, internal heat exchanger and compression efficiency, evaporation and condensation temperature in the R404A refrigeration cycle and temperature difference of cascade heat exchanger. The main results are summarized as follows : The COP(coefficient of performance) of R404A refrigeration system increases with increasing evaporation temperature. The evaporation capacity of R744 as secondary refrigerant increases with the increase in evaporation pressure of R744 secondary refrigeration. And the enthalpy in the evaporator outlet of R744 increases with the increasing evaporation pressure of R744 secondary refrigeration. Therefore, it is important to analysis for the relationship between COP of R404A refrigeration system and refrigeration capacity of R744. As cascade evaporation temperature increase, the exergy loss of condenser and compressor using R404A is the largest among all components. Therefore, the exergy loss in the condenser and compressor using R404A must be decreased to enhance the COP of R404A refrigeration system with R744 secondary refrigerant.

Development of a Numerical Modeling Technique for Predicting Groundwater flow and Heat Transport in a Standing Column Well (수주지열정의 지하수 유동 및 지열 이동 예측을 위한 수치 모델링 기법 개발)

  • Park, Seongmin;Hwang, Gisub;Moon, Jongphil;Kihm, Jung-Hwi
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.461-471
    • /
    • 2016
  • Numerical modules based on a conventional thermo-hydrological numerical model, TOUGH2, are developed to provide a numerical modeling technique for a standing column well (SCW). Cooling and heating operations for two different types of SCW are then simulated using these modules. Modeling showed these operations to be significantly influenced by heat exchange and fluid mixing between the SCW and the adjacent geologic formation and groundwater. The results also reveal that heat exchange between the oppositely flowing outflow and inflow in the PVC or PE pipe and the SCW borehole is an important factor. Overall, the numerical modeling technique developed here can reasonably simulate fluid flow and heat transport phenomena in the complex internal structures of a SCW. The proposed technique can be used practically for the quantitative analysis of heat exchange in a SCW at the design, construction, and operation stages.

LARGE-SCALE VERSUS EDDY EFFECTS CONTROLLING THE INTERANNUAL VARIATION OF MIXED LAYER TEMPERATURE OVER THE NINO3 REGION

  • Kim, Seung-Bum;Lee, Tong;Fukumori, Ichiro
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.21-24
    • /
    • 2006
  • Processes controlling the interannual variation of mixed layer temperature (MLT) averaged over the NINO3 domain ($150-90^{\circ}W$, $5^{\circ}N-5^{\circ}S$) are studied using an ocean data assimilation product that covers the period of 1993 to 2003. Advective tendencies are estimated here as the temperature fluxes through the domain's boundaries, with the boundary temperature referenced to the domain-averaged temperature to remove the dependence on temperature scale. The overall balance is such that surface heat flux opposes the MLT change but horizontal advection and subsurface processes assist the change. The zonal advective tendency is caused primarily by large-scale advection of warm-pool water through the western boundary of the domain. The meridional advective tendency is contributed mostly by Ekman current advecting large-scale temperature anomalies though the southern boundary of the domain. Unlike many previous studies, we explicitly evaluate the subsurface processes that consist of vertical mixing and entrainment. In particular, a rigorous method to estimate entrainment allows an exact budget closure. The vertical mixing across the mixed layer (ML) base has a contribution in phase with the MLT change. The entrainment tendency due to temporal change in ML depth is negligible comparing to other subsurface processes. The entrainment tendency by vertical advection across the ML base is dominated by large-scale changes in wind-driven upwelling and temperature of upwelling water. Tropical instability waves (TIWs) result in smaller-scale vertical advection that warms the domain during La Ni? cooling events. When the advective tendencies are evaluated by spatially averaging the conventional local advective tendencies of temperature, the apparent effects of currents with spatial scales smaller than the domain (such as TIWs) become very important as they redistribute heat within the NINO3 domain. However, such internal redistribution of heat does not represent external processes that control the domain-averaged MLT.

  • PDF

Study of Insam-Buja-Tang (IBT) on MRL/MpJ-Faslpr lupus-prone mice (루푸스 동물 모델에서 인삼부자탕(人蔘附子湯)이 미치는 영향)

  • Kim, Kyoung-Shin;Moon, Sung-Sikm;Kim, Byoung-Soo;Kang, Jung-Soo
    • Journal of Haehwa Medicine
    • /
    • v.20 no.1
    • /
    • pp.11-23
    • /
    • 2011
  • Systemic Lupus Erythematosus(SLE) is an autoimmune disease invading the skin, joint, kidney, intestinal membrane, neurosystem and other organs. SLE is an autoimmune disease characterized by immune dysregulation resulting in the production of antinuclear antibodies(ANA), generation of circulating immune complexes, and activation of the complement system. In Korean medicine, lupus can be classified as acute arthritis, reddish butterfly erythema, asthenic disease, edema and so on. The cause and procedure of the diseases are flourishing noxious heat, excessive fire due to deficiency of yin, blood stasis due to stagnation of qi, internal movement of the liver-wind, congenital deficiency, exhausted vital-qi, which are treated by clearing away heat and cooling the blood, nourshing yin and extinguishing fire, treating flatulence and activating blood circulation, nourishing the blood to expel wind, invigorating the liver and kidney, invigorating qi and replenishing the blood. To experimentally examine the influence of Insam-Buja-Tang (Ginseng & Aconiti Extract, IBT) on the outbreak and development of lupus, lupus induce MRL/MpJ-Faslpr lupus-prone mice model was used. As IBT was orally administrated to a lupus model mouse, various tests such as the weight, urine protein, renal function, Lymph cell test of the spleen, Cytokine expression, histopathological analysis of kideny were performed to see the influence on the kidney and whether it work effectively on the immune function. The main purpose of this study is to evaluate the effect of IBT on MRL/MpJ-Faslpr lupus-prone mice model. The effect of IBT on MRL/MpJ-Faslpr lupus-prone mice that can have autoimmune disease similar to SLE in human was evaluated after IBT per oral in the present study.

Effect of RuCl3 Concentration on the Lifespan of Insoluble Anode for Cathodic Protection on PCCP

  • Cho, H.W.;Chang, H.Y.;Lim, B.T.;Park, H.B.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.177-183
    • /
    • 2015
  • Prestressed Concrete steel Cylinder Pipe (PCCP) is extensively used as seawater pipes for cooling in nuclear power plants. The internal surface of PCCP is exposed to seawater, while the external surface is in direct contact with underground soil. Therefore, materials and strategies that would reduce the corrosion of its cylindrical steel body and external steel wiring need to be employed. To prevent against the failure of PCCP, operators provided a cathodic protection to the pre-stressing wires. The efficiency of cathodic protection is governed by the anodic performance of the system. A mixed metal oxide (MMO) electrode was developed to meet criteria of low over potential and high corrosion resistance. Increasing coating cycles improved the performance of the anode, but cycling should be minimized due to high materials cost. In this work, the effects of $RuCl_3$ concentration on the electrochemical properties and lifespan of MMO anode were evaluated. With increasing concentration of $RuCl_3$, the oxygen evolution potential lowered and polarization resistance were also reduced but demonstrated an increase in passive current density and oxygen evolution current density. To improve the electrochemical properties of the MMO anode, $RuCl_3$ concentration was increased. As a result, the number of required coating cycles were reduced substantially and the MMO anode achieved an excellent lifespan of over 80 years. Thus, we concluded that the relationship between $RuCl_3$ concentration and coating cycles can be summarized as follows: No. of coating cycle = 0.48*[$RuCl_3$ concentration, $M]^{-0.97}$.

Field Application of the Difference of Setting Time of Improving Super Retarding Agent of Foundation Mat Mass Concrete (기초매트 매스 콘크리트의 초지연제를 활용한 응결시간차공법의 현장적용)

  • Noh, Sang-Kyun;Baek, Dae-Hyun;Kwon, Hae-Won;Bae, Yeoun-Ki;Chung, Sung-Jin;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.57-60
    • /
    • 2008
  • According to the recent tendency that the buildings in the downtown concerning rising land prices and efficient use of building are gradually Manhattanized mainly the grand scaled residential buildings, structure of the buildings relates to safety and so the very thick mat concrete is selected as the foundation of architectures. Because mat concretes can not be simultaneously pour in a great quantity due to the circumstance at the field, not only the questions on the unification between the concretes pour on the upper layer and the lower layer are presented but also the cracks by the internal force from the difference of hydration exothermic period are occurred because of the time lag. Thus, this study checked the efficiency to apply "The hydration heat controlling method of mass concrete for horizontal partition pouring construction" to the skyscraper sites under construction at Haiundai in Busan. After applying this method, the result of observation that the cracks by hydration heat in all over the placement surface did never be founded. Also, in case of the economic analysis that the hydration heat reduction method using super retarding agent by difference of setting time is approximately 80% cheaper than the hydration heat reduction method by pipe cooling in the construction expenses.

  • PDF

A Experimental Study on Effluence Characteristic of the Rainfall in the IRMA Green Roof System of KICT (역지붕 녹화옥상시스템[KICT-GRS2004]의 우수유출 특성에 관한 실험적 연구)

  • Jang, Dae-hee;Kim, Hyeon-soo;Lee, Keon-ho;Moon, Soo-young
    • KIEAE Journal
    • /
    • v.5 no.2
    • /
    • pp.11-18
    • /
    • 2005
  • The Purpose of this study is development and analysis of Effluence Characteristic of the Rainfall in the IRMA Green Roof System(developed in KICT) Plus 50 program is an internal research project at KICT(Korean Institute of Construction Technology) which has it as an object ; to lengthen the building's life 50-year or more and reduce energy conception 50% than present. Green roof system is one of the most important theme in the Plus 50 program. Generally, a Green Roof System has a positive effect on the thermal conductivity in winter, the micro cooling effect on building and city by evaporation in summer, the flood-control effect by runoff-reduction or the treated rainwater-quality of green roof system and so on. However, inspection of the physical effect of green roof system does not consider in Korea. Above all, long-term monitoring and a whole observation of green roof system is needed to probate the effect. So a new experimental method could be tried in this research, which is never attempted in Korea. The measurement by a bucket with a great volume, 1L, gives a new dimension of measuring green roof effect to measure the permanent running flood from a wide roof. This offers a reasonable result on a long-term measuring of a running water. Additionally, the thermal behavior of the IRMA(Insulated Roof Membrane Assembly), known in the western europe as a reasonable solution at green roof system by economical benefits and easy construction, would be experimented.

Numerical Study on the Thermal Environment of a Natural Light Based Multi-layered Plant Factory (자연광 기반 적층형 식물공장의 열환경에 대한 수치해석 연구)

  • Park, Dong Yoon;Jang, Seong-Teak;Chang, Seong-Ju
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.43-50
    • /
    • 2013
  • Recent researches on plant factory system deal with the convergence of lighting technology, agricultural technology inclusive to the high-tech industries worldwide in order to respond to the decreasing crop harvest due to global warming and abnormal weather phenomena. However, the fundamental performance standard is not currently being introduced in the case of plants factory and its commercialization is not activated because of high initial investment and operating cost. Large portion of the initial investment and operating cost of a plant factory is ascribed to artificial light sources and thermal control facilities, therefore, innovation should be provided in order to improve the economics of the plant factory. As an alternative, new plant factory could harness solar thermal and geothermal systems for heating, cooling and ventilation. In this study, a natural light dependent multi-layer plant factory's thermal environment was analyzed with two-dimensional numerical methods to elicit efficient operation conditions for optimized internal physical environment. Depending on the supply air temperature and airflow rate introduced in the facility, the temperature changes around the crops was interpreted. Since the air supplied into the plant factory does not stay long enough, the ambient temperature predicted around the plating trays was not significantly different from that of the supplied air. However, the changes of airflow rate and air flow pattern could cause difference to the temperature around the planting trays. Increasing the amount of time of air staying around the planting trays could improve energy performance in case the thermal environment of a natural light based multi-layer plant factory is considered.

Dependence of Nanoparticle and Combustion Characteristics of Gasoline Direct Injection Engines on Coolant Temperature (GDI 엔진의 냉각수온에 따른 연소성능 및 입자상 물질 배출 특성)

  • Lee, Hyo-Keun;Choi, Kwan-Hee;Myung, Cha-Lee;Park, Sim-Soo;Park, Jong-Il;Han, Seung-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.131-136
    • /
    • 2012
  • This paper investigated the combustion and exhaust gas characteristics of gasoline direct injection engines for various cooling water temperature. The engine-out nanoparticle emission number and size distribution were measured by a DMS-500 equipped upstream of the catalyst. A CLD-400 and an HFR-400 were equipped at the exhaust port to analyze the cyclic NOx and total hydrocarbon emission characteristics. The results showed that the nanoparticle emission number greatly increased at low coolant temperatures and that the exhaust mainly contained particulate matter of 5.10 nm. THC also increased under low temperature conditions because of fuel film on the combustion chamber. NOx emissions decreased under high temperature conditions because of the increase in internal exhaust gas recirculation. In conclusion, an engine management system control strategy for driving coolant temperature up rapidly is needed to reduce not only THC and NOx but also nanoparticle emissions.