• Title/Summary/Keyword: Internal Transactions

Search Result 1,248, Processing Time 0.027 seconds

Advanced Protective Relaying Algorithm by Flux-Differential Current Slope Characteristic for Power Transformer (전력용 변압기용 자속-차전류 기울기 특성에 의한 개선된 보호계전 알고리즘)

  • 박철원;신명철
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.7
    • /
    • pp.382-388
    • /
    • 2004
  • The most widely used primary protection for the internal fault detection of power transformers is current percentage differential relaying(PDR). However, the harmonic components could be decreased by magnetizing inrush when there have been changes to the material of iron core or its design methodology. The higher the capacitance of high voltage status and underground distribution, the more differential current includes the second harmonic component during occurrence of an internal fault. Therefore, the conventional harmonic restraint methods need modification. This paper proposes an advanced protective relaying algorithm by fluxt-differential current slope characteristic and trend of voltage and differential current. To evaluate the performance of proposed algorithm, we have made comparative studies of PDR fuzzy relaying, and DWT relaying. The paper is constructed power system model including power transformer, utilizing the WatATP99, and data collection is made through simulation of various internal faults and inrush. As the results of test. the new proposed algorithm was proven to be faster and more reliable.

Harmonic Resonances of Continuous Rotor with Nonlinearity and Internal Resonances (비선형 연속축의 조화진동 및 내부공진)

  • Lee, Seong-U;Kim, Gwang-Rae;Son, Bong-Se
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2413-2419
    • /
    • 2000
  • Harmonic resonances in a continuous rotating shaft with distributed mass are discussed. The restoring force of the shaft has geometric stiffening nonlinearity due to the extension of the shaft centerline. The effect of a distributed lateral force, such as the gravity, is assumed. The possibility of the occurrences of harmonic resonances, the shapes of resonance curves, and internal resonance phenomena are investigated.

Subhamonic Resonances of order 1/2 of Continuous Rotor with Nonlinearity and Internal Resonances (비선형 연속축의 1/2차 분수조화진동 및 내부공진)

  • 남궁재관;이성우
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.43-50
    • /
    • 2001
  • Subharmonic resonances of order 1/2 of a continuous rotating shaft with distributed mass are discussed. The restoring force of the shaft exhibits geometric stiffening nonlinearity due to the extension of the shaft center line. It is assumed that a distributed lateral force, such as the gravity, acts on the rotor. The possibility of the occurrence of subharmonic resonances, the shapes of resonance curves, and internal resonance phenomena are investigate.

  • PDF

Enhancement of the Surface Smoothness of Cu Ribbon for Solar Cell Modules

  • Cho, Tae-Sik;Cho, Chul-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.20-24
    • /
    • 2015
  • We studied the relationship between the surface smoothness of the internal Cu ribbon and the morphology of the Sn-Pb plating layer for solar cell modules. A bumpy surface was observed on the surface of the solar ribbon, which caused irregular reflection of light. Large, Pb-rich, primary ${\alpha}$-phases were found below the convex surface of the solar ribbon, passing from the surface of the internal Cu ribbon to the surface of the plating layer. The primary ${\alpha}$-phases heterogeneously nucleated on the convex surface of the Cu ribbon, and then largely grew to the convex surface of the plating layer. The restriction of the primary ${\alpha}$-phase's formation was enabled by enhancing the smoothness of the Cu ribbon's surface; it was also possible to increase the adhesive strength and decrease contact resistance. We confirmed that the solar ribbon's surface smoothness depends on the internal Cu ribbon's surface smoothness.

Stress Intensity Factor Analysis of Nozzle Considering Pressure and Heat Transfer on Crack Face (균열면에 작용하는 내압과 열전달의 영향을 고려한 노즐부의 응력확대계수 해석)

  • Jeong, Min-Jung;Kim, Yeong-Jin;Gang, Gi-Ju;Beom, Hyeon-Gyu;Pyo, Chang-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2252-2258
    • /
    • 2000
  • In order to investigate the effect of nozzle on stress concentration in pressure vessels, three dimensional finite element analyses were performed. The results were compared with those for corresponding two dimensional axisymmetric finite element analyses. A three dimensional finite element model with a surface crack was also designed to evaluate the effect of internal pressure and heat transfer on crack face, and the resulting stress intensity factors from the finite element analyses were compared with those for ASME Sec. XI and Raju-Newman's stress intensity factor solution. As a result, the validity of currently available stress intensity factor solutions for a surface crack was reviewed in the presence of geometrical complexity, heat transfer and internal pressure.

An Experimental Study on the Influence of the Internal Cavity and Gap on the Bell Acoustics (내부 공동과 간극이 종 음향에 미치는 영향에 대한 실험적 연구)

  • Jeong, Won-Tae;Kang, Yeon-June;Kim, Seock-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.9
    • /
    • pp.822-827
    • /
    • 2010
  • In this study, it is experimentally investigated how bell acoustics are influenced by the internal cavity of the bell and the gap between the bell bottom and the floor. Acoustic transmission function and natural frequency of a test bell are measured and analysed. Experimental study is conducted to evaluated how the resonance effect influences the bell sound and how the bell sound is different according to the striking condition and the measurement direction. Acoustic resonance frequency of the cavity-gap system is predicted by boundary element analysis using SYSNOIS and the validity of the predicted result is verified by experiment. The result of the study could be applied to determine the optimal gap size which makes the bell sound strong and long.

An Experimental Study on the Aerodynamic Drag of Model Cars with Cooling Air Passage (냉각유동이 자동차항력에 미치는 영향에 관한 실험적 연구)

  • 안이기;정형호;김광호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.405-413
    • /
    • 1994
  • This paper presents the experimental results of aerodynamic drags of model cars. The effects of cooling air on total drag were introduced by using momentum theorem. Vehicle-liked Ahmed body and 1/5 model car were used to evaluate the increments of drags due to the internal flow. The results were compared with momentum theorem and other's experiments and showed good agreements. In the case of Ahmed body, drags were increased by 22% due to the internal flow and decreased linealy by reducing internal air flow rates and inlet areas. The experiments on 1/5 model car with ill-defined air flow passage showed 10% increment of drag. The results of present study showed that cooling drag could be predicted by momentum theorem within small errors.

Vibration Analysis of the Pipeline with Internal Unsteady Fluid Flow by Using Spectral Element Method (스펙트럴요소법을 이용한 내부 비정상류를 갖는 파이프에 대한 진동해석)

  • Seo, Bo-Sung;Cho, Joo-Yong;Lee, U-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.387-393
    • /
    • 2006
  • In this paper, a spectral element model is developed for the uniform straight pipelines conveying internal unsteady fluid flow. The spectral element matrix is formulated by using the exact frequency-domain solutions of the pipe-dynamics equations. The spectral element dynamic analysis is then conducted to evaluate the accuracy of the present spectral element model and to investigate the vibration characteristics and internal fluid characteristics of an example pipeline system.

A Study on the Radiated Noise the Prediction in the Pipe by Fluid Induced Vibration using the Radiation Efficiency and Pipe Surface Vibration (배관 표면진동과 방사효율을 이용한 배관 소음예측기법 연구)

  • Yi, Jongju;Park, Kyunghoon;Jung, Woojin;Seo, Youngsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.10
    • /
    • pp.763-769
    • /
    • 2014
  • This study is on the experiment and prediction of the pipe noise due to the internal fluid. The vibration of pipe external surface and noise in air were measured according to the internal fluid velocity and pipe type. In the experiment, the vibration and noise level of the straight pipe and rounded pipes show that the vibration and noise level are almost same. The 900 mitred pipe shows the high vibration and noise level. In the prediction of noise due to the internal flow, the method using the pipe surface vibration and radiation efficiency shows good agreement with experimental result.

An Analysis for Failure Mechanisms and Strength Evaluation on Brazed Joint (브레이징 접합부의 강도평가 및 고장분석)

  • Kang Ki-Weon;Shim Hee-Jin;Lee Byung-Jei;Jhang Kyung-Yung;Kim Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1298-1304
    • /
    • 2006
  • The present paper is aiming at the evaluation for failure mechanisms and static strength of brazed joints used in household electronics. For these purposes, the failure analysis was performed on the various brazed joints, through the bursting, the micro-Victors hardness tests and 3-dimensional X-ray technique. The failure modes of brazed joints were classified into two different types, based on the results of bursting pressure test by means of self-designed internal-pressure testing machine. Their failure mechanism was dependent on the relationship between heat effect occurred in manufacturing process and internal flaws such as incomplete penetration and pin hole. Also, a finite element analysis was performed to evaluate the stress distribution with respect to the heat and the internal flaws.