Browse > Article
http://dx.doi.org/10.4313/TEEM.2015.16.1.20

Enhancement of the Surface Smoothness of Cu Ribbon for Solar Cell Modules  

Cho, Tae-Sik (Department of Nano Materials Engineering, Kyungpook National University)
Cho, Chul-Sik (Laboratory, Sanko Korea Co.)
Publication Information
Transactions on Electrical and Electronic Materials / v.16, no.1, 2015 , pp. 20-24 More about this Journal
Abstract
We studied the relationship between the surface smoothness of the internal Cu ribbon and the morphology of the Sn-Pb plating layer for solar cell modules. A bumpy surface was observed on the surface of the solar ribbon, which caused irregular reflection of light. Large, Pb-rich, primary ${\alpha}$-phases were found below the convex surface of the solar ribbon, passing from the surface of the internal Cu ribbon to the surface of the plating layer. The primary ${\alpha}$-phases heterogeneously nucleated on the convex surface of the Cu ribbon, and then largely grew to the convex surface of the plating layer. The restriction of the primary ${\alpha}$-phase's formation was enabled by enhancing the smoothness of the Cu ribbon's surface; it was also possible to increase the adhesive strength and decrease contact resistance. We confirmed that the solar ribbon's surface smoothness depends on the internal Cu ribbon's surface smoothness.
Keywords
Solar ribbon; Sn-Pb solder; Surface smoothness; Morphology; Energy materials;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. H. Manko, Solders and Soldering (McGraw-Hill, New York, 2001), p. 2-13, p. 21-27.
2 D. M. Bagnall and M. Boreland, Energy Policy, 36, 4390 (2008). [DOI: http://dx.doi.org/10.1016/j.enpol.2008.09.070].   DOI   ScienceOn
3 M. N. Islam, Y. C. Chan, M. J. Rizvi, and W. Jillek, J. Alloys Comp., 400, 136 (2005). [DOI: http://dx.doi.org/10.1016/j.jallcom.2005.03.053].   DOI   ScienceOn
4 C. Y. Liu, C. Chen, and K. N. Tu, J. Appl. Phys., 88, 5703 (2000). [DOI: http://dx.doi.org/10.1063/1.1319327].   DOI   ScienceOn
5 J. H. Lee, Y. H. Lee, and Y. S. Kim, Scripta Materialia, 42, 789 (2000). [DOI: http://dx.doi.org/10.1016/S1359-6462(99)00431-5].   DOI   ScienceOn
6 M. N. Islam, Y. C. Chan, A. Sharif, and M. O. Alam, Microelectron. Reliab., 43, 2031 (2003). [DOI: http://dx.doi.org/10.1016/S0026-2714(03)00190-2].   DOI   ScienceOn
7 M. N. Islam, A. Sharif, and Y. C. Chan, J. of Electron. Mater., 34, 143 (2005). [DOI: http://dx.doi.org/10.1007/s11664-005-0225-z].   DOI
8 Satyanarayan and K. N. Prabhu, Advanced in Colloid and Interface Science, 166, 87 (2011).   DOI
9 R. Lathrop and K. Pfluke, 26th European Union Solar Energy Conf., (2011).
10 M. Schaefer, R. A. Fournelle, and J. Liang, J. of Electronic Materials, 27, 1167 (1998). [DOI: http://dx.doi.org/10.1007/s11664-998-0066-7].   DOI
11 W. Sinke, Renewable Energy World (2008).
12 A. Henckens, H. Goossens, European Coatings Journal (2010).
13 I. J. Bennett, 22th European Photovoltaic Solar Energy Conf. (2007).
14 C. Y. Liu, J. Appl. Phys., 88, 5703 (2000). [DOI: http://dx.doi. org/10.1063/1.1319327].   DOI   ScienceOn
15 H. H. Hsieh, F. M. Lin, and S. P. Yub, Sol. Energ. Mat. Sol. C., 95, 39 (2010). [DOI: http://dx.doi.org/10.1016/j.solmat.2010.04.034].
16 H. H. Hsieh, F. M. Lin, F. Y. Yeh, and and M. H. Lin, Sol. Energ. Mat. Sol. C., 93, 864 (2009). [DOI: http://dx.doi.org/10.1016/j.solmat.2008.10.005].   DOI   ScienceOn
17 D. Gupta, K. Vieregge, and W. Gust, Acta Materialia, 47, 5 (1998). [DOI: http://dx.doi.org/10.1016/S1359-6454(98)00348-6].   DOI   ScienceOn
18 D. K. Perovich, J. of Geophysical Research, 99, 3351 (1994). [DOI: http://dx.doi.org/10.1029/93JC03397].   DOI   ScienceOn
19 F. Ziese, G. Maret, and U. Gasser, J. of Physics: Condensed Matter., 25, 375105 (2013). [DOI: http://dx.doi.org/10.1088/0953-8984/25/37/375105].   DOI   ScienceOn
20 J. E. Spinelli, I. L. Ferreira, and A. Garcia, J. Alloy. Compd., 384, 217 (2004). [DOI: http://dx.doi.org/10.1016/j.jallcom.2004.04.098].   DOI   ScienceOn