• 제목/요약/키워드: Internal Gear

검색결과 112건 처리시간 0.028초

합금강을 이용한 내접 인벌류우트 기어의 단조에 관한 연구 (A Study on the Forging of Internal Involute Gears with Alloy Steel)

  • 최종웅;조해용;최재찬
    • 한국정밀공학회지
    • /
    • 제15권2호
    • /
    • pp.90-98
    • /
    • 1998
  • Forging of internal involute gears with alloy steel has been analyzed by means of upper bound method. Kinematically admissible velocity fields for forging of internal gear were proposed. It was assumed that the shape of free flow surface during forging operation is a straight line perpendicular to the plane of symmetry. Using the suggested velocity fields, forging loads and relative pressures were calculated by numerical method. Consequently forging die should be successfully designed without fracture or failure during forging operation. Experiments were carried out with the designed die and SCM415 alloy steel as billet material. The calculated loads were compared with experimental one and they are in good agreement with experimental inspections. As a result, the calculated solutions would be useful to predict the loads and the designed die is suitable for forging of internal involute spur gear with alloy steel. The forged gear is measured to be KS 4 class and its class should be improved by subsequent working such as shaving after forging operation.

  • PDF

2K-H형 유성기어장치의 효율해석에 관한 연구 (A Study on the Efficiency Analysis of 2K-H Type Planetary Gear Train)

  • 김연수;최성욱;최상훈
    • 한국정밀공학회지
    • /
    • 제17권3호
    • /
    • pp.200-207
    • /
    • 2000
  • The analysis of interference and efficiency are important phases in the design of planetary gear train. Because most planetary gear trains contain internal gear called ring gear, interferences between ring gear and planet gear should be analyzed in the step of design and manufacturing. Addendum modification coefficient, pressure angle, speed ratio between ring gear and sun gear are governing factors for interferences. In this paper, the interferences of 2K-H I type planetary gear train based on various planetary gear trains are studied. As that results, the ranges of addendum modification coefficients which would not lead to interferences is analyzed. Based on these ranges, theoretical efficiencies are investigated as 6 configurations of 2K-H I type planetary gear train, which is based on basic efficiency, and optimal addendum modification coefficients which generate the maximum efficiency of planetary gear train are presented. To prove results of theoretical efficiency analysis, experimentations are performed.

  • PDF

박육 림 내접치차의 강도설계 -응력계산식 작성- (Strength Design of Thin-Rimmed Internal Gear -Formulation of Stress Calculation-)

  • 정태형
    • 대한기계학회논문집
    • /
    • 제9권4호
    • /
    • pp.478-486
    • /
    • 1985
  • 본 논문에서는 이러한 점에 대처하고 얇은 림 내접치차의 이뿌리응력을 해석, 이 결과를 종합하여 얇은 림 내접치차의 이뿌리응력을 간편하게 계산할 수 있는 근사 계산식을 작성한다. 또 스트레인게이지에 의한 이뿌리응력의 실측치와 이계산식에 의한 계산응력치를 비교검토하여 이 계산식의 계산정밀도 및 신뢰성을 검토하기로 한 다.

A Study on an Analysis and Design of the Internal Structure of Heumgyeonggak-nu

  • Kim, Sang Hyuk;Yun, Yong-Hyun;Ham, Seon Young;Mihn, Byeong-Hee;Ki, Ho-Chul;Yoon, Myung-Kyoon
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권2호
    • /
    • pp.171-182
    • /
    • 2017
  • In this study, the internal structure of a Heumgyeonggak-nu (欽敬閣漏) was designed, and the power transmission mechanism was analyzed. Heumgyeonggak-nu is an automated water clock from the Joseon Dynasty that was installed within Heumgyeonggak (欽敬閣), and it was manufactured in the $20^{th}$ year of the reign of King Sejong (1438). As descriptions of Heumgyeonggak-nu in ancient literature have mostly focused on its external shape, the study of its internal mechanism has been difficult. A detailed analysis of the literature record on Heumgyeonggak-nu (e.g., The Annals of the Joseon Dynasty) indicates that Heumgyeonggak-nu had a three-stage water clock, included a waterfall or tilting vessel (欹器) using the overflowed water, and displayed the time using a ball. In this study, the Cheonhyeong apparatus, water wheel, scoop, and various mechanism wheels were designed so that 16 fixed-type scoops could operate at a constant speed for the water wheel with a diameter of 100 cm. As the scoop can contain 1.25 l of water and the water wheel rotates 61 times a day, a total of 1,220 l of water is required. Also, the power gear wheel was designed as a 366-tooth gear, which supported the operation of the time signal gear wheel. To implement the movement of stars on the celestial sphere, the rotation ratio of the celestial gear wheel to the diurnal motion gear ring was set to 366:365. In addition, to operate the sun movement apparatus on the ecliptic, a gear device was installed on the South Pole axis. It is expected that the results of this study can be used for the manufacture and restoration of the operation model of Heumgyeonggak-nu.

내부세레이션홈을 갖는 스퍼어 기어의 단조에 관한 연구 (A Study on the Forging of Spur Gears with Internal Serrations)

  • 최종웅;조해용
    • 한국정밀공학회지
    • /
    • 제15권2호
    • /
    • pp.81-89
    • /
    • 1998
  • Numerical calculation tools for forging of gear-like components based on kinematically admissible velocity fields for upper bound method applicable to various deformation features of workpiece in forging processes were suggested. Each one of them deals with unidirectional flow of metal on dies, such as external involute spur gear. square spline, internal serrations. A complex calculation tool of gear-like component forging process was built up by combining these kinematically velocity fields. In this paper the workpiece with 110th external and internal teeth is divided into two parts. The deformation of each part is analyzed simultaneously using numerical calculation tool from combined kinematically admissible velocity field. The experimental set-up was installed in a 200 ton hydraulic press. As a result, each kinematically admissible velocity field could be combined with others and the calculated solution are useful to predict the capacity of forging equipment.

  • PDF

i-PGS 기반 선회베어링의 접촉피로강도 설계 (Contact Fatigue Strength Design of a Slewing Bearing Based on i-PGS)

  • 권순만;신흥철
    • 한국생산제조학회지
    • /
    • 제25권1호
    • /
    • pp.21-29
    • /
    • 2016
  • To overcome the large ring gear manufacturing problems seen in slewing bearings and girth gears, pin gear drive units have been developed. Among them, a novel slewing bearing with an internal pinwheel gear set (i-PGS) is introduced in this paper. First, we consider the exact cam pinion profile of i-PGS with the introduction of a profile shift coefficient. Furthermore, a new root relief profile modification for the i-PGS cam pinion is presented. Then, the contact stresses are investigated to determine the characteristics of the surface fatigue by varying the shape design parameters. The results show that the contact stresses of i-PGS can be reduced significantly by increasing the profile shift coefficient. In addition, the contact ratio, a measure of teeth overlapping action, decreases with the decrease of the allowable pressure angle.

내부세레이션홈이 존재하는 외치차 단조에 관한 연구 (A Study on the Forging of Gears with lnternal Serrations)

  • 최종용;조해용
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.633-637
    • /
    • 1995
  • Numerical calculation tool for forging of gear-like components based on kinematically admissible velocity fields for upper bound method applicable to various deformation features of workpiece in forging processes were suggested. Each one of them deals with unidirectional flow of metal on dies, such as external involute spur gear, sequare spline, internal serrations. A complex calcuation tool of gear-like component forging process was built up by combining these kinematically velocity fields. In this paper, the workpiece with both external and internal teeth is divided into two parts. The deformation of each part is analyzed simultaneously using numerical calculation tool form combined kinematically admissible velocity field. The experimental set-up was installed in a 200 ton hydraulic press. As a result, each kinematically admissible velocity field could be combined with other and the calculated solution are useful to predict the capacity of forging equipment.

  • PDF

내측 기어 성형용 핫러너 금형에서의 충전불균형에 관한 연구 (A study on the filling imbalances in hot-runner mold for internal gear based on injection molding)

  • 노병수;제덕근;정영득
    • Design & Manufacturing
    • /
    • 제2권3호
    • /
    • pp.1-5
    • /
    • 2008
  • Plastic parts are molded for the purpose of mass production in injection molding. Therefore designer is usually designing molds that has geometrically balanced hot runner lay-out for filling balance at cavities. Although, mold is manufactured with geometrically balanced runner lay-out, there are actually filling imbalances in cavities. These filling imbalances phenomenon are caused by complicated interaction between melt and mold. In this paper, filling imbalances for internal gear based on injection molding in hot-runner mold were investigated by CAE and injection molding experiences.

  • PDF

유성기어 감속기에서 전위계수가 기어 강도에 미치는 영향 (The Effect of Addendum Modification Coefficient on Gear Strength to Planetary Gear Reducer)

  • 곽기석;한동섭
    • 한국기계가공학회지
    • /
    • 제10권4호
    • /
    • pp.38-43
    • /
    • 2011
  • Industrial reducer is in general use to Deck Crane. High-precision and high-efficient reducer is minimized the power-loss and energy-loss of a machine. So it contribute the price reduction and life extension. Reducer is usually using the Planetary gear reducer. Planetary gear reducer is composed the sun gear, planet gear, internal gear and casing. Industrial reducer's wear and breakage have a short-life. To solve this problem, it is using the profile-shifted-gear or tooth modification. This study was carried out the effect of addendum modification coefficient on tooth fillet bending strength to planetary reducer. Tooth fillet bending stress is calculate. And all parameter were expressed the function of addendum modification coefficient. And then stress concentration factor of tooth fillet curve was express the function of addendum modification coefficient using comparison between theory and finite element analysis.