• Title/Summary/Keyword: Internal Flow Rate

Search Result 657, Processing Time 0.027 seconds

A Numerical Study on the Internal Flow Characteristics and Pumping Performance of a Piezoelectric-based Micropump with Electromagnetic Resistance (전자기 저항을 이용한 압전 구동방식 마이크로 펌프의 내부유동 특성과 펌핑성능에 대한 수치해석적 연구)

  • An, Yong-Jun;Oh, Se-Hong;Kim, Chang-Nyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.84-92
    • /
    • 2010
  • In this study a numerical analysis has been conducted for the flow characteristics and pumping performance of a piezoelectric-based micropump with electromagnetic resistance exerted on electrically conducting fluid. Here, electromagnetic resistance is alternately applied at the inlet and outlet with alternately applied magnetic fields in association with the reciprocal membrane motion of the piezoelectric-based micropump. A model of Prescribed Deformation is used for the description of the membrane motion. The internal flow characteristics and pumping performance are investigated with the variation of magnetic flux density, tube size, displacement of membrane and the frequency of the membrane. It turns out that the current micropump has a wide range of pumping flow rate compared with diffuser-nozzle based micropumps.

A study on the working mechanism of internal pressure of super-large cooling towers based on two-way coupling between wind and rain

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.479-497
    • /
    • 2019
  • In the current code design, the use of a uniform internal pressure coefficient of cooling towers as internal suction cannot reflect the 3D characteristics of flow field inside the tower body with different ventilation rate of shutters. Moreover, extreme weather such as heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind. In this study, the world's tallest cooling tower under construction, which stands 210m, is taken as the research object. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed iteratively using continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind speed and rainfall intensity on the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower body is analyzed. The combination of wind velocity and rainfall intensity that is most unfavorable to the cooling tower in terms of distribution of internal pressure coefficient is identified. On this basis, the wind/rain loads, distribution of aerodynamic force and working mechanism of internal pressures of the cooling tower under the most unfavorable working condition are compared between the four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the amount of raindrops captured by the internal surface of the tower decreases as the wind velocity increases, and increases along with the rainfall intensity and ventilation rate of the shutters. The maximum value of rain-induced pressure coefficient is 0.013. The research findings lay the basis for determining the precise values of internal surface loads of cooling tower under extreme weather conditions.

Numerical Study of the Characteristics of Internal Flow Including an Air Core in a Cylindrical Tank (공기기둥이 형성된 원통 용기의 내부유동 특성에 관한 수치해석 연구)

  • Park, Il-Seouk;Son, Jong-Hyeon;Sohn, Chang-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.269-276
    • /
    • 2012
  • An air core is generated during draining through an axisymmetrically placed circular orifice after rotating a cylindrical tank filled with a liquid. If an air core is generated, the draining flow rate decreases and the draining time increases. In this study, the process of the formation of the air core and internal flow characteristics in a cylindrical tank are studied by numerical methods. Several methods are used in the analysis, and the results are compared with experimental results to obtain the appropriate scheme. Axial, radial, and swirl velocity profiles on a variety of heights are shown graphically, and the internal flow structure is analyzed from the velocity profiles, the vector plot, and the stream function distribution.

Effects of Korean Red Ginseng on Dry Mouth: A Randomized, Double-Blind, Placebo-Controlled Trial

  • Park, Jae-Woo;Lee, Beom-Joon;Bu, Young-Min;Yeo, In-Kwon;Kim, Jin-Sung;Ryu, Bong-Ha
    • Journal of Ginseng Research
    • /
    • v.34 no.3
    • /
    • pp.183-191
    • /
    • 2010
  • Dry mouth is easily neglected if not associated with oral diseases. Consequently, xerostomatic patients often use unconventional therapies. In traditional Korean medicine, Korean red ginseng (KRG) has long been used to relieve dry mouth. However, no clinical trials have investigated whether KRG actually has an effect on dry mouth. This study was performed to evaluate the efficacy of KRG for dry mouth. We enrolled 100 volunteers with no obvious oral or salivary gland diseases and divided them into KRG and placebo groups. Each group was divided into six subgroups according to age and gender. The subjects received 6 g/day of KRG or placebo for 8 weeks. The dry mouth visual analog scale (VAS), salivary flow rate, and a dry mouth-related symptom questionnaire were evaluated at baseline and at 4 and 8 weeks. KRG treatment did not show any significant differences for any of the variables. However, KRG improved the dry mouth VAS at 4 weeks and dry mouthrelated symptoms at 8 weeks in women, but not in men. Subgroup analyses revealed that KRG markedly improved the dry mouth VAS in women of menopausal age (40 to 59 years) at 4 and 8 weeks. KRG may have beneficial effects for dry mouth in women, especially those of menopausal age, but not in men. Further investigation in post- and perimenopausal women is required to elaborate on these findings.

Understanding of a Rate of Return Analysis using an IRR (내부수익률을 이용한 수익률분석법에 대한 이해)

  • 김진욱;이현주;차동수
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.5
    • /
    • pp.9-14
    • /
    • 2002
  • A capital investment problem is essentially one of determining whether the anticipated cash inflows from a proposed project are sufficiently attractive to invest funds in the project. The net present value(NPV) criterion and internal rate of return(IRR) criterion are widely used as means of making investment decisions. A positive NPV means the equivalent worth of the inflows is greater than the equivalent worth of outflows, so, the project makes profit. Business people are familiar with rates of return because they all borrow money to finance ventures, even if the money they borrow is their own. Thus they are apt to use the IRR in preference to the NPV. The IRR can be defined as the discount rate that causes the net present value of a cash flow to equal zero. Why the project are accepted if the project's IRR is greater than the investor's minimum attractive rate of return\ulcorner Against the NPV, the definition cannot distinctly explain the concept of the IRR as decision criterion. We present a new definition of the IRR as the ratio of profit on the invested capital.

Effects of Attached Masses on the Instability and Vibration Suppression of a Flexible Pipe Conveying Fluid (유체유동에 의한 유연한 파이프의 불안정과 진동억제에 미치는 부가질량의 영향)

  • 류봉조;정승호;이종원
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.280-290
    • /
    • 2000
  • The paper deals with vibration suppression and dynamic stability of a vertical cantilevered pipe conveying an internal flowing fluid and having an attached mass. Real pipe systems may have some valves or mechanical attached parts, which can be regarded as attached lumped masses. The effect of attached mass on the dynamic stability of a cantilevered pipe conveying fluid is investigated for different locations and magnitudes of the attached mass. The flow rate was controlled through motor pump output and measured by a flow meter. Experimental resutls in the vicinity of flutter fluid velocity were compared with theoretical predictions. It has been found that the experimental results are in substantial agreement with the theoretical predictions. Finally, in order to suppress the vibration of the pipe subjected to a disturbance, and control technique using an internal flowing fluid is introduced.

  • PDF

Computational Fluid Dynamics of Hydraulic Valve Meter (밸브 수압측정기의 유동해석)

  • Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.1963-1968
    • /
    • 2012
  • In this research paper a hydraulic valve meter for the measurement of water pressure in fields was designed by using three dimensional automatic design program CATIA. And, also computational fluid dynamics was applied to the designed hydraulic valve meter in order to obtain flow distributions due to internal pressures. This analytical results will be provided as fundamental data in the development of new concepts of hydraulic valve meter and the hydraulic valve meter in development may reduce valve checking times and improve safety by preventing accidents earlier.

Dynamics of Coaxial Swirl Injectors in Combustion Environment (연소 조건하의 동축형 분사기의 동적 특성 고찰)

  • Seo Seonghyeon;Han Yeoung-Min;Lee Kwang-Jin;Kim Seung-Han;Seol Woo-Seok;Lee Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.282-287
    • /
    • 2004
  • Unielement combustion tests were conducted using coaxial bi-swirl injectors. Major experimental parameters were a recess length and a fuel-side swirl chamber. Combustion efficiency mainly depends on a mixing mechanism for the present coaxial swirl injectors. Low-frequency pressure excitations around 200Hz were observed for all injectors. However, dynamic behaviors considerably differ for an external and an internal mixing case controlled by a recess length. The internal mixing induces mixture to be biased at a specific frequency in a mass flow rate, which results in a relatively high amplitude of pressure fluctuations but results for the external mixing case show that fuel and oxidizer mixture flow carries more complicated, multiple wave characteristics due to broad mixing region as well as disintegration and merging phenomena of propellant films.

  • PDF

Implementation of Digital Filters on Pipelined Processor with Multiple Accumulators and Internal Datapaths

  • Hong, Chun-Pyo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.2
    • /
    • pp.44-50
    • /
    • 1999
  • This paper presents a set of techniques to automatically find rate optimal or near rate optimal implementation of shift-invariant flow graphs on pipelined processor, in which pipeline processor has multiple accumulators and internal datapaths. In such case, the problem to be addressed is the scheduling of multiple instruction streams which control all of the pipeline stages. The goal of an automatic scheduler in this context is to rearrange the order of instructions such that they are executed with minimum iteration period between successive iteration of defining flow graphs. The scheduling algorithm described in this paper also focuses on the problem of removing the hazards due to inter-instruction dependencies.

  • PDF

Reclaiming Multifaceted Financial Risk Information from Correlated Cash Flows under Uncertainty

  • Byung-Cheol Kim;Euysup Shim;Seong Jin Kim
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.602-607
    • /
    • 2013
  • Financial risks associated with capital investments are often measured with different feasibility indicators such as the net present value (NPV), the internal rate of return (IRR), the payback period (PBP), and the benefit-cost ratio (BCR). This paper aims at demonstrating practical applications of probabilistic feasibility analysis techniques for an integrated feasibility evaluation of the IRR and PBP. The IRR and PBP are concurrently analyzed in order to measure the profitability and liquidity, respectively, of a cash flow. The cash flow data of a real wind turbine project is used in the study. The presented approach consists of two phases. First, two newly reported analysis techniques are used to carry out a series of what-if analyses for the IRR and PBP. Second, the relationship between the IRR and PBP is identified using Monte Carlo simulation. The results demonstrate that the integrated feasibility evaluation of stochastic cash flows becomes a more viable option with the aide of newly developed probabilistic analysis techniques. It is also shown that the relationship between the IRR and PBP for the wind turbine project can be used as a predictive model for the actual IRR at the end of the service life based on the actual PBP of the project early in the service life.

  • PDF