• Title/Summary/Keyword: Internal Flow

Search Result 2,475, Processing Time 0.023 seconds

A study on the performance and internal flow of inline Francis turbine

  • Chen, Chengcheng;Inagaki, Morihito;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1225-1231
    • /
    • 2014
  • This paper presents the performance characteristic of a Francis hydro turbine with an inline casing. This turbine is designed for city water supply system. Due to large changes in ground elevation with high points and low points, some systems may experience larger-than-normal required pressures in areas with low ground elevations. One way to dissipate these excess pressures is by the use of an inline-turbine instead of an inline-pressure reducing valve. For best applicability and minimal space consumption, the turbine is designed with an inline casing instead of the common spiral casing. As a characteristic of inline casing, the flow accesses to the runner in the radial direction, showing a low efficiency. The installation of vanes improves the internal flow and gives the positive encouragement to the output power. For the power transmission to the outside of the turbine casing from the runner axis, a belt passage is designed in the inline casing, as its influence, the region after the belt passage shows a relatively low output power. The clearance gap in the runner side space is considered, in which a small volume of flow is contracted into the clearance gap, forming the leakage flow. The leakage flow leads to a decrease in the efficiency.

CFD Analysis on the Performance and Internal Flow of a Micro Cross-Flow Hydro Turbine in the Range of Very Low Specific Speed (극저비속도 영역 마이크로 횡류수차의 성능 및 내부유동 수치해석적 연구)

  • Choi, Young-Do;Son, Sung-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.25-30
    • /
    • 2012
  • Renewable energy has been interested because of fluctuation of oil price, depletion of fossil fuel resources and environmental impact. Amongst renewable energy resources, hydropower is most reliable and cost effective way. In this study, to develop a new type of micro hydro turbine which can be operated in the range of very low specific speed, a cross-flow hydro turbine with simple structure is proposed. The turbine is designed to be used at the very low specific speed range of hydropower resources, such as very high-head and considerably small-flow rate water resources. CFD analysis on the performance and internal flow characteristics of the turbine is conducted to obtain a practical data for the new design method of the turbine. Results show that optimized arrangement of guide vane angle and inner guide angle can give contribution to the turbine performance improvement.

Experimental Study on the Internal Flow of a Ball Valve used for a Gas Pipeline (가스 파이프라인용 볼 밸브 내부유동의 실험적 연구)

  • KIM, CHUL-KYU;LEE, SANG-MOON;JANG, CHOON-MAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.3
    • /
    • pp.311-317
    • /
    • 2016
  • This paper presents the flow characteristics of a ball valve used for a gas pipeline. Understanding of the internal flow of a ball valve is an important to analyze the physical phenomena of the valve. Present experimental study was performed by IEC 60534-2-3, the international standard for an industrial control valve testing procedure. Pressure measured at upstream and downstream of the valve, flow-rate and gas temperature passing the inside of the gas pipeline were measured with respect to valve opening rates. Throughout the experimental measurement of the ball valve, empirical equation of the pressure drop between the ball valve according to the mass flow rates is successively obtained using a polynomial curve fitting method. In addition, flow coefficient for determining the valve capacity is also analyzed with respect to valve opening rates using the curve fitting method.

Numerical Investigation on Experiment for Passive Containment Cooling System (피동 원자로건물 냉각계통 실험에 관한 수치적 연구)

  • Ha, Hui Un;Suh, Jung Soo
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.3
    • /
    • pp.96-104
    • /
    • 2020
  • The numerical simulations were conducted to investigate the thermal-fluid phenomena occurred inside the experimental apparatus during a PCCS, used to remove heat released in accidents from a containment of light water nuclear power plant, operation. Numerical simulations of the flow and heat transfer caused by wall condensation inside the containment simulation vessel (CSV), which equipped with 18 vertical heat exchanger tubes, were conducted using the commercial computational fluid dynamics (CFD) software ANSYS-CFX. Shear stress transport (SST) and the wall condensation model were used for turbulence closure and wall condensation, respectively. The simulation using the actual size of the apparatus. However, rather than simulating the whole experimental apparatus in consideration of the experimental cases, calculation resources, and calculation time, the simulation model was prepared only in CSV. Selective simulation was conducted to verify the effects of non-condensable gas(NC gas) concentration, CSV internal pressure, and wall sub-cooling conditions. First, as a result of the internal flow of CSV, it was observed that downward flow due to condensation occurred surface of the vertical tube and upward flow occurred in the distant place. Natural convection occurred actively around the heat exchanger tube. Due to this rising and falling internal flow, natural circulation occurred actively around the heat exchanger tubes. Next, in order to check the performance of built-in condensation model using according to the non-condensable gas concentration, CSV internal flow and wall sub-cooling, the heat flux values were compared with the experimental results. On average, the results were underestimated with and error of about 25%. In addition, the influence of CSV internal pressure and wall sub-cooling was small, but when the condensate was highly generated due to the low non-condensable gas concentration, the error was large compared to the experimental values. This is considered to be due to the nature of the condensation model of the CFX code. However, in spite of the limitations of CFD, it is valid to use the built-in condensation model of CFD for PCCS performance prediction from a conservative perspective.

Three-dimensional dynamics of vortex-induced vibration of a pipe with internal flow in the subcritical and supercritical regimes

  • Duan, Jinlong;Chen, Ke;You, Yunxiang;Wang, Renfeng;Li, Jinlong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.692-710
    • /
    • 2018
  • The Three-dimensional (3-D) dynamical behaviors of a fluid-conveying pipe subjected to vortex-induced vibration are investigated with different internal flow velocity ${\nu}$. The values of the internal flow velocity are considered in both subcritical and supercritical regimes. During the study, the 3-D nonlinear equations are discretized by the Galerkin method and solved by a fourth-order Runge-Kutta method. The results indicate that for a constant internal flow velocity ${\nu}$ in the subcritical regime, the peak Cross-flow (CF) amplitude increases firstly and then decrease accompanied by amplitude jumps with the increase of the external reduced velocity. While two response bands are observed in the In-line (IL) direction. For the dynamics in the lock-in condition, 3-D periodic, quasi-periodic and chaotic vibrations are observed. A variety of CF and IL responses can be detected for different modes with the increase of ${\nu}$. For the cases studied in the supercritical regime, the dynamics shows a great diversity with that in the subcritical regime. Various dynamical responses, which include 3-D periodic, quasi-periodic as well as chaotic motions, are found while both CF and IL responses are coupled while ${\nu}$ is beyond the critical value. Besides, the responses corresponding to different couples of ${\mu}_1$ and ${\mu}_2$ are obviously distinct from each other.

Effects of Internal Vibration on Flowability of Fresh Concrete (콘크리트의 유동성에 미치는 타설진동의 영향)

  • 최수경
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.77-85
    • /
    • 2000
  • Various concretes are used for construction works depending on the types of structure, building element and method of construction. An internal vibration work is one of the important processes for adequately pouring various concrete into a certain form. This study was undertaken to find out the effects of internal vibration on flowability of fresh concrete by concrete flow test under eight conditions of vibration. Presumable equation models also were created to show all vibration effects without regard to kinds of concrete. As the results of this study, the degree of vibration effects were varied according to the properties of concrete. Acceleration amplitude of vibration that applied to fresh concrete was effective value of the properties of vibration in a viewpoint of flowability. Moreover, This research presents the presumed equation models including variables created by acceleration amplitude and measuring value of vibrated concrete flow test. These models are presumable methods of vibration effects regardless of kinds of concrete.

Spray Plume Characteristics of Liquid Jets in Subsonic Crossflows (수직분사제트의 액적영역 분무특성에 대한 연구)

  • Song, Jin-Kwan;Ahn, Kyu-Bok;Oh, Jeong-Seog;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.113-120
    • /
    • 2006
  • The effect of internal liquid flow on spray plume characteristics was performed experimentally in subsonic cross flows. The injector internal flow was classified as three modes such as a normal, cavitation, and hydraulic flip. The objectives of the research are to investigate the effect of internal liquid flow on the spray plume characteristics and compare the trajectory of spray plume with previous works. The results suggest that the trajectory and width of spray plume can be correlated as a function of liquid/air momentum flux ratio(q), injector diameter and normalized distance from the injector exit(x/d). It's also found that the injector internal turbulence influences the spray plume characteristics significantly.

  • PDF

The Normal Predicted Value of Peak Expiratory Flow(PEF) Measured by the Peak Flow Meter and Correlation Between PEF and Other Ventilatory Parameters (Peak Flow Meter로 측정한 최대호기류속도(PEF)의 추정정상치 및 가타 환기기능검사와의 상관관계)

  • Kim, Min-Chul;Kwon, Kee-Buem;Yim, Dong-Hyun;Song, Chang-Seuk;Jung, Yong-Seuk;Jang, Tae-Won;Yeu, Ho-Dae;Jung, Maan-Hong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.5
    • /
    • pp.1000-1011
    • /
    • 1998
  • Background: For the diagnosis or evaluation of airway obstruction in bronchial asthma and chronic obstructive lung disorders, various parameters derived from the forced expiratory volume curve and maximal expiratory flow volume curve have been used. Recently the peak expiratory flow(PEF) measured by the peak flow meter is widely used because of its simplicity and convenience. But there were still no data of the predicted normal values measured by the peak flow meter in Korea. This study was to obtain the predicted normal value of PEF and to know the accuracy of this value to predict $FEV_1$. Method: The measurements of PEF by the MiniWright peak flow meter and several parameters derived from the forced expiratory volume and maximal expiratory flow volume curves by the Microspiro HI 501(Chest Co.) were done in 129 men and 125 women without previous history of the respiratory diseases. The predicted normal values of parameters according to the age and the height were obtained, and the regression equation of $FEV_1$ by PEF was calculated. Results: The predicted normal values of PEF(L/min) were -2.45$\times$Age(year) +1.36 $\times$ Height(cm)+427 in men, and -0.96 $\times$ Age (year) + 2.01 $\times$ Height (cm) + 129 in women. FEFmax derived from the maximal expiratory flow volume curve was less than by 125 L/min in men and 118 L/min in women respectively compared to PEF. $FEV_1$(ml) predicted by PEF was 5.98 $\times$ PEF(L/min) + 303 in men, and 4.61 $\times$ PEF(L/min) + 291 in women respectively. Conclusion : The predicted normal value of PEF measured by the peak flow meter was calculated and it could be used as a standard value of PEF while taking care of patients with airway obstruction. $FEV_1$, the gold standard of ventilatory function, could be predicted by PEF to a certain extent.

  • PDF

Case-control Study : Cerebral Blood Flow as Measured by Transcranial Doppler Ultrasonography(TCD) in Hypertensives (TCD를 이용한 고혈압환자군과 정상혈압군의 뇌혈류측정에 관한 비교연구)

  • Heo, Jeong-Eun;Kim, Young-Kyun;Kwon, Jung-Nam;Kim, Kyoung-Min;Kim, Bong-Hyun;Kim, Min-Kyu;Kim, Jae-Kyu;Park, Sun-Mi
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.4
    • /
    • pp.950-961
    • /
    • 2008
  • Objectives : The purpose of this study was to compare cerebral biood flow between hypertensives and normotensives using transcranial doppler ultrasonography (TCD). Methods : I investigated cerebral blood flow of 72 hypertensives and 127 normotensives. To evaluate the cerebral blood flow, I measured the systolic peak velocity(Vs) and mean How velocity (Vm) of the middle cerebral artery(MCA), anterior cerebral artery(ACA), posterior cerebral artery(PCA), basilar artery(BA), and internal carotid artery(ICA) in the two groups using TCD. Result : 1. There was a decrease in the Vs and Vm of all examined vessels of hypertensives in comparison with normotensives. There was a significant difference in the Vs of ACA and Vm of ACA, PCA, ICA. 2. In males, there was a decrease in the Vs of ACA, PCA, ICA and Vm of MCA, ACA, PCA, ICA of hypertensives in comparison with normotensives. However, there was no significant difference in the Vs or Vm of all examined vessels. 3. In females, there was a decrease in the Vs and Vm of all examined vessels of hypertensives in comparison with normotensives. There was a significant difference in the Vs of MCA, ACA and BA and Vm of ACA, PCA and BA. 4. In 30-49 year-olds, there was a decrease in the Vs and Vm of all examined vessels of hypertensives in comparison with normotensives. There was a significant difference in the Vs of ACA and Vm of ACA. 5. In 50-69 year-olds, there was a decrease in the Vs of ACA, PCA, BA, ICA and Vm of all examined vessels of hypertensives in comparison with normotensives. However, there was no significant difference in the Vs or Vm of all examined vessels. 6. In 70-89 vests old. there was a decrease in the Vs. Vm of PCA, BA, ICA of hypertensives in comparison with normotensives. But, there was no significant difference in the Vs, Vm of all examined vessels. Conclusions : There was a significant difference in the cerebral blood now velocity between hypertensives and normotcnsives. These results suggest that blood pressure has influence on cerebral blood flow.

  • PDF

Convergent Investigation with Internal Flow Analysis According to the Opening and Closing of Vehicle Window (차량 창문 개폐에 따른 내부에서의 유동 해석으로의 융합적 고찰)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.2
    • /
    • pp.155-160
    • /
    • 2020
  • In this study, the pleasant driving environment of the driver and passenger in the summer was investigated through the internal flow analysis of air due to the opening and closing of the car windows. The conditions on the entrance of the air conditioner with the opening and closing status of vehicle window were applied to the flow analysis by taking into consideration the actual driving environment. The automotive air conditioning outlet, the seat and the inside of car were modeled. As the air flow inside the car was analyzed, the air flow configuration and the temperature distribution were examined. In this analysis, the results were taken in consideration of only the effects of internal air and the opening and closing of window, assuming the interior of the vehicle as insulation. The analysis of each condition shows that these models maintain a pleasant environment. It is seen that this analysis result on the internal flow analysis according to the opening and closing of vehicle window can be applied by converging with the field of design.