• Title/Summary/Keyword: Internal Flaw

Search Result 32, Processing Time 0.026 seconds

Evaluation Technology for the Flaw Sizing of Generator Rotor by Using Phased Array Ultrasonic Technique (위상배열 초음파기법을 이용한 발전기 로터 결점크기 평가)

  • Kim, Jin-Hoi;Park, Cher-Young;Lee, Sang-Hoon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.5 no.1
    • /
    • pp.14-19
    • /
    • 2009
  • NDE(Nondestructive examination) detects a flaw or discontinuity in materials. Flaws detected by the examination shall be evaluated for the decision basis of the integrity. The internal flaws of forging products can be detected by UT. However, UT has detection limits because of its reflected signal weakness. Normally, a 1mm or less flaw is known as the limit. If a flaw was detected, the size of flaw would be evaluated by AVG(or DGS) technique. To verify the evaluation data, alternative examination methods are needed. But there is no alternative examination methods until now. In this study, Phased array ultrasonic technique can be used to size the flaws in the generator rotor with focused beam of ultrasonic wave as a supplement method of AVG. Also, the phased array ultrasonic technique described enables the shape of flaw to be depicted exactly.

  • PDF

Evaluation on the Effect of Ultrasonic Testing due to Internal Medium of Pipe in Nuclear Power Plant (원자력발전소 배관 내부 매질이 초음파검사에 미치는 영향 평가)

  • Yoon, Byung Sik;Kim, Yong Sik;Yang, Seung Han
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.9 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • The periodic inspection of piping and pressure vessels welds in nuclear power plant has to provide reliable result related to weld flaws, such as location, maximum amplitude response, ultrasonic length, height and finally the nature or flaw pattern. The founded flaw in ultrasonic inspection is accepted or rejected based on these data. Specially, the amplitude of flaw response is used as basic parameter for flaw sizing and it may cause some deviation in length sizing result. Currently the ultrasonic inspections in nuclear power plant components are performed by specific inspection procedure which describing inspection technique include inspection system, calibration methodology and flaw characterizing. To perform ultrasonic inspection during in-service inspection, reference gain should be established before starting ultrasonic inspection by the requirement of ASME code. This reference gain used as basic criteria to evaluate flaw sizing. Sometimes, a little difference in establishing reference gain between calibration and field condition can lead to deviation in flaw sizing. Due to this difference, the inspection result may cause flaw sizing error. Therefore, the objective of this study is to compare and evaluate the ultrasonic amplitude difference between air filled and water filled pipe in nuclear power plant. Additionally, the accuracy of flaw sizing is estimated by comparing both conditions.

Inspection for Internal Flaw and Thickness of Concrete Tunnel Lining Using Impact Echo Test (충격반향시험에 의한 콘크리트 터널 라이닝 내부결함 및 두께 조사)

  • 김영근;이용호;정한중
    • Tunnel and Underground Space
    • /
    • v.7 no.3
    • /
    • pp.230-237
    • /
    • 1997
  • As concrete structure is getting old and decrepit, its inspection and diagnosis is getting important. Therefore, it is necessary to estimate the soundness of structure using non-destructive tests for effective repairs and maintenances. But, applications of non-destructive tests in tunnel have been used restrictively, due to accessibility only from one side in tunnel lining and presence of tunnel installations. Recently, the various non-destructive techniques have been studied. Especially, ground penetrating radar(GPR) and impact echo (IE) methods have been researched for tunnel inspection. In this study, the applicability of impact echo test in tunnel lining inspection has been investigated. This paper described the tunnel inspection for lining thickness and internal flaw using impact echo tests. Model tests were carried out using impact echo test systems on two concrete models, Model I is measuring for lining thickness, Model II is detecting for internal flaw. Also, the test were applied for lining inspections in a tunnel constructed by NATM. From the results of impact echo tests, we have concluded that impact echo test is a very useful and effective technique for inspecting the concrete tunnel linings.

  • PDF

Internal Oscillating Flow Field Analysis in Air Chamber of Wave Energy Conversion (파력발전장치 공기실 내 왕복유동장 해석)

  • Moon, Jae-Seung;Hyun, Beom-Soo;Hong, Key-Yong;Shin, Seung-Ho;Kim, Gil-Won
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.427-430
    • /
    • 2006
  • This paper deals with the internal oscillating flaw in air chamber and duct of an OWC-type wave energy converter by numerical analysis using commercial CFD code, FLUENT. Whole oscillating flaw from OWC-type chamber to outlet through duct was solved by unsteady analysis in order that performance of wave energy conversion was made better. Results show that whole oscillating flaw field of this system in unsteady condition. Duct shape at setting place of turbine is curved with elbow, because profile of inlet condition to turbine is important in its efficiency. This paper is found internal flaw in air chamber and duct. Also, this research was found effect of duct shape.

  • PDF

Study on rock fracture behavior under hydromechanical loading by 3-D digital reconstruction

  • Kou, Miaomiao;Liu, Xinrong;Wang, Yunteng
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.283-296
    • /
    • 2020
  • The coupled hydro-mechanical loading conditions commonly occur in the geothermal and petroleum engineering projects, which is significantly important influence on the stability of rock masses. In this article, the influence of flaw inclination angle of fracture behaviors in rock-like materials subjected to both mechanical loads and internal hydraulic pressures is experimentally studied using the 3-D X-ray computed tomography combined with 3-D reconstruction techniques. Triaxial compression experiments under confining pressure of 8.0 MPa are first conducted for intact rock-like specimens using a rock mechanics testing system. Four pre-flawed rock-like specimens containing a single open flaw with different inclination angle under the coupled hydro-mechanical loading conditions are carried out. Then, the broken pre-flawed rock-like specimens are analyzed using a 3-D X-ray computed tomography (CT) scanning system. Subsequently, the internal damage behaviors of failed pre-flawed rock-like specimens are evaluated by the 3-D reconstruction techniques, according to the horizontal and vertical cross-sectional CT images. The present experimental does not only focus on the mechanical responses, but also pays attentions to the internal fracture characteristics of rock-like materials under the coupled hydro-mechanical loading conditions. The conclusion remarks are significant for predicting the rock instability in geothermal and unconventional petroleum engineering.

Evaluation of Canister Weld Flaw Depth for Concrete Storage Cask (콘크리트 저장용기의 캐니스터 용접부 결함깊이 평가)

  • Moon, Tae-Chul;Cho, Chun-Hyung;Jung, Sung-Hun;Lee, Young-Oh;Jung, In-su
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.91-99
    • /
    • 2017
  • Domestically developed concrete storage casks include an internal canister to maintain the confinement integrity of radio-active materials. In this study, we analyzed the depth of flaws caused by loads that propagate canister weld cracks under normal, off-normal and accident conditions, and evaluated the maximum allowable weld flaw depth needed to secure the structural integrity of the canister weld and to reduce the welding time of the internal canister lid of the concrete storage cask. Structural analyses for normal, off-normal and accident conditions were performed using the general-purpose finite element analysis program ABAQUS; the allowable flaw depth was assessed according to ASME B&PV Code Section XI. Evaluation results revealed an allowable canister weld flaw depth of 18.75 mm for the concrete storage cask, which satisfies the critical flaw depth recommended in NUREG-1536.

A Study on the Size Evaluation of Disc and Band Type Flaw by Ultrasonic Tandem Testing (초음파(超音波)TANDEM사각법(斜角法)에 의한 원형(圓形) 및 띠형결함(形缺陷)의 크기 평가(評價)에 관한 연구(硏究))

  • Han, E.K.;Eom, H.S.;Kim, J.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.5 no.2
    • /
    • pp.12-21
    • /
    • 1986
  • Generally, butt welds with plate thickness $30{\sim}40mm$ are welded with groove angle $40^{\circ},\;60^{\circ},\;70^{\circ}$, etc. In the detection of internal weld defects, oblique testing with single probe has been mainly used. But, recently, in acccordance with enlargement of welded structure, thick plate with 100-200mm are frequently required. Thus I-groove welding method was lately developed and often used. In this case, most frequently generated defects are the lack of weld penetration and incomplete fusion between base metal and welding material. If we would detect by oblique testing with single probe, detecting flaw is occassionally impossible or very underestimated. In this study, the limit for applying tandem method was studied in dise and band type flaws. The estimation of flaw size could be within 10% error compared to real flaws.

  • PDF

Vibration Characteristics of Steam Generator U-tubes with Defect (결함을 가진 증기발생기 U-튜브의 진동특성)

  • 조종철;정명조;김웅식;김효정;김태형
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.400-408
    • /
    • 2003
  • This paper investigates the vibration characteristics of steam generator (SG) U-tubes with defect. The operating SG shell-side flow field conditions for determining the fluidelastic instability parameters such as added mass are obtained from three-dimensional SG flow calculation. Modal analyses are performed for the U-tubes either with axial or circumferential flaw with different sizes. Special emphases are on the effects of flaw orientation and size on the modal and instability characteristics of tubes, which are expressed in terms of the natural frequency, corresponding mode shape and stability ratio. Also, addressed is the effect of the internal pressure on the vibration characteristics of the tube.

Engineering Estimation of Limit Load Solution for Wall-Thinned Pipes Considering Material Properties (재료물성을 고려한 감육배관의 공학적 한계하중해 제시)

  • Choi, Jae-Boong;Kim, Jin-Su;Goo, Bon-Geol;Kim, Young-Jin;Choi, Young-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.351-356
    • /
    • 2001
  • A potential loss of structural integrity due to aging of nuclear piping may have a significant effect on the safety of nuclear power plants. In particular, failures due to the erosion and corrosion defects are a major concern. As a result, there is a need to assess the remaining strength of pipe with erosion/corrosion defects. In this paper, a limit load solution for the eroded and corroded SA106 Grade B pipes subjected by internal pressure is developed. based in 3-D finite element analyses, considering a wide range of the shape of pipeline, flaw depth and axial flaw length parametrically.

  • PDF

Estimating Geotechnical System Response Probability of Internal Erosion Risk in Fill Dam using Event Tree Analysis (사건수 분석 기법을 이용한 필댐의 내부 침식 위험도에 대한 지반공학적 시스템 응답 확률 산정)

  • Noh, Kyung-Lyun;Lim, Jeong-Yeul;Mok, Young-Jin;Jung, Young-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1815-1829
    • /
    • 2014
  • Recently frequent collapse of old fill dams has taken place, which increases social awareness in the safety of the infrastructure. Fill dams in Korea has been incautiously regarded as safe once the fill dam is considered to have a full capacity to retain a conservative design flood determined by government authorities. However, developed foreign countries has been managing their fill dams by introducing systematic risk assessment techniques over a long period of time. In this study, the system response probabilities of the deteriorated old fill dams in Korea were systematically evaluated and analyzed by using the internal erosion toolbox based on the event tree analysis technique. The probability of the existence of flaw and the magnitude of the hydraulic gradient through a potential crack can significantly influence the geotechnical system response probability. The results of this study show that the probability of the existence of flaw and the magnitude of the hydraulic gradient through a potential crack can significantly influence the geotechnical system response probability and the risk of the deteriorated fill dam can be quantitatively assessed.