• Title/Summary/Keyword: Internal Diameter

Search Result 817, Processing Time 0.027 seconds

Refracture after locking compression plate removal in displaced midshaft clavicle fractures after bony union: a retrospective study

  • Park, Ho-Youn;Kim, Seok-Jung;Sur, Yoo-Joon;Jung, Jae-Woong;Kong, Chae-Gwan
    • Clinics in Shoulder and Elbow
    • /
    • v.24 no.2
    • /
    • pp.72-79
    • /
    • 2021
  • Background: A midshaft clavicle fracture is a common fracture that typically responds well to open reduction and internal fixation (ORIF). However, refracture can occur after implant removal (IR). This study aimed to analyze the rate of refracture and related factors after removal of the locking compression plate (LCP) for displaced midshaft clavicle fractures. Methods: We retrospectively reviewed the medical records of 201 patients who had undergone ORIF with LCP for midshaft clavicle fractures after IR after bony union from January 2011 to May 2018 at our institute. We evaluated basic demographic characteristics and radiographic parameters. All patients were treated with an LCP for primary fracture. The patients were divided into two groups: a refracture group that experienced a second fracture within 1 year after IR and a no-fracture group. Results: There were four cases (1.99%) of refracture; three were treated conservatively, while one was treated surgically. All patients achieved bony union. The average interval between refracture and IR was 64 days (range, 6-210 days). There was a significant difference in classification of fractures (AO Foundation/Orthopaedic Trauma Association [AO/OTA] classification) between the two groups. However, other patient demographics and radiographic measurements between refracture and IR, such as bone diameter, showed no significant difference between the two groups. Conclusions: This study showed that one in 50 patients suffered from refracture after removal of the LCP. Thus, if patients desire IR, the surgeon should explain that there is a relatively higher possibility of refracture for cases with simple or segmental fractures than for other types of fracture.

Computed tomography and magnetic resonance imaging characteristics of giant cell tumors in the temporomandibular joint complex

  • Choi, Yoon Joo;Lee, Chena;Jeon, Kug Jin;Han, Sang-Sun
    • Imaging Science in Dentistry
    • /
    • v.51 no.2
    • /
    • pp.149-154
    • /
    • 2021
  • Purpose: This study aimed to investigate the computed tomography and magnetic resonance imaging features of giant cell tumors in the temporomandibular joint region to facilitate accurate diagnoses. Materials and Methods: From October 2007 to June 2020, 6 patients (2 men and 4 women) at Yonsei University Dental Hospital had histopathologically proven giant cell tumors in the temporomandibular joint. Their computed tomography and magnetic resonance imaging findings were reviewed retrospectively, and the cases were classified into 3 types based on the tumor center and growth pattern observed on the radiologic findings. Results: The age of the 6 patients ranged from 25 to 53 years. Trismus was found in 5 of the 6 cases. One case recurred. The mean size of the tumors, defined based on their greatest diameter, was 32 mm (range, 15-41 mm). The characteristic features of all cases were a heterogeneously-enhancing tumorous mass with a lobulated margin on computed tomographic images and internal multiplicity of signal intensity on T2-weighted magnetic resonance images. According to the site of origin, 3 tumors were bone-centered, 2 were soft tissue-centered, and 1 was peri-articular. Conclusion: Computed tomography and magnetic resonance imaging yielded a tripartite classification of giant cell tumors of the temporomandibular joint according to their location on imaging. This study could help clinicians in the differential diagnosis of giant cell tumors and assist in proper treatment planning for tumorous diseases of the temporomandibular joint.

Repairing Damaged Hair Using Pentapeptides of Various Amino Acid Sequences with Crosslinking Reaction

  • Choi, Wonkyung;Son, Seongkil;Song, Sang-Hun;Kang, Nae Gyu;Park, Sun-gyoo
    • Korea Journal of Cosmetic Science
    • /
    • v.2 no.1
    • /
    • pp.11-19
    • /
    • 2020
  • The aim of this study is to investigate the effect of various pentapeptides on hair repair depending on the characteristics of comprising amino acids using crosslinking agents in hair. Total ten peptides were synthesized with two kinds of amino acids respectively, of which were previously categorized according to R group of the amino acids contributing to the characteristic of each peptide: STTSS (Ser-Thr-Thr-Ser-Ser), LIILL (Leu-Ile-Ile-Leu-Leu), CMMCC (Cys-Met-Met-Cys-Cys), DEEDD (Asp-Glu-Glu-Asp-Asp), RKKRR (Arg-Lys-Lys-Arg-Arg), TAMRA-STTSS, TAMRA-LIILL, TAMRA-CMMCC, TAMRA-DEEDD, and TAMRA-RKKRR. Pentapeptide alone, or pentapeptides with crosslinking agents such as polymeric carbodiimide (PCI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were treated to chemically damaged hair. Hair diameter and break strength (N = 40/case) were measured to calculate tensile strength of hair for computing hair repair ratio, and fluorescence yields (N = 20/case) were collected for hair treated with TAMRA-peptides. The tensile strength of hair treated with pentapeptides alone, or pentapeptides with cross-linking agents is consistent with the fluorescence yield from the microscope images of the cross-sectioned hair in vision and in numerical values. Pentapeptides consisting of hydrophobic amino acids (LIILL), amino acids with sulfur (CMMCC), and basic amino acids (RKKRR) increased the tensile strength in perm-damaged hair. Pentapeptides with no extra carboxyl/amine groups in R group of amino acids resulted in no significant differences in hair strength and fluorescence yield among hairs treated with alone and with crosslinkers. Pentapeptides with extra carboxyl groups or amine groups enabled further strengthening of hair due to increased bonds within the hair after carbodiimide coupling reaction. The hair repairs of pentapeptides with various amino acid sequences were studied using crosslinking. Depending on the physical characteristics of comprising amino acids, the restoration of damaged hair was observed with tensile strength of hair and fluorescence signals upon cross-sectioned hair in parallel to possibly understand the binding tendency of each pentapeptide within the hair.

Technical Evaluation of Engineering Model of Ultra-Small Transmitter Mounted on Sweetpotato Hornworm

  • Nakajima, Isao;Muraki, Yoshiya;Mitsuhashi, Kokuryo;Juzoji, Hiroshi;Yagi, Yukako
    • Journal of Multimedia Information System
    • /
    • v.9 no.2
    • /
    • pp.145-154
    • /
    • 2022
  • The authors are making a prototype flexible board of a radio-frequency transmitter for measuring an electromyogram (EMG) of a flying moth and plan to apply for an experimental station license from the Ministry of Internal Affairs and Communications of Japan in the summer of 2022. The goal is to create a continuous low-dose exposure standard that incorporates scientific and physiological functional assessments to replace the current standard based on lethal dose 50. This paper describes the technical evaluation of the hardware. The signal of a bipolar EMG electrode is amplified by an operational amplifier. This potential is added to a voltage-controlled crystal oscillator (27 MHz, bandwidth: 4 kHz), frequency-converted, and transmitted from an antenna about 10 cm long (diameter: 0.03 mm). The power source is a 1.55-V wristwatch battery that has a total weight of about 0.3 g (one dry battery and analog circuit) and an expected operating time of 20 minutes. The output power is -7 dBm and the effective isotropic radiated power is -40 dBm. The signal is received by a dual-whip antenna (2.15 dBi) at a distance of about 100 m from the moth. The link margin of the communication circuit is above 30 dB within 100 m. The concepts of this hardware and the measurement data are presented in this paper. This will be the first biological data transmission from a moth with an official license. In future, this telemetry system will improve the detection of physiological abnormalities of moths.

Anatomical and Pathological Findings of Magnetic Resonance Imaging in Idiopathic Sudden Sensorineural Hearing Loss

  • Kim, Min Bum;Lim, Jihyun;Moon, Il Joon
    • Journal of Audiology & Otology
    • /
    • v.24 no.4
    • /
    • pp.198-203
    • /
    • 2020
  • Background and Objectives: We sought to evaluate the diagnostic and prognostic value of measurable parameters of internal auditory canal (IAC) magnetic resonance imaging (MRI) in patients with idiopathic sudden sensorineural hearing loss (ISSNHL). Subjects and Methods: We retrospectively reviewed the patients with ISSNHL who underwent IAC MRI from January 2008 to March 2019. Measurable parameters of IAC MRI, such as the diameter of the IAC, bony cochlear nerve canal, and cross-sectional area of the cochlear nerve, were measured by a single examiner. These parameters were then compared between the affected and healthy sides. Inner-ear abnormalities such as intralabyrinthine hemorrhage or labyrinthitis were also evaluated. The relationship between the surveyed parameters and the diagnosis of ISSNHL was assessed. Results: A total of 208 patients with ISSNHL were included. The measured parameters of IAC MRI were not different between the affected and healthy sides and were also not associated with the diagnosis of ISSNHL. However, inner-ear abnormalities of IAC MRI in ISSNHL displayed a significant association with worse hearing before and after treatment. An age that was older than 40 years also correlated with poorer outcomes. Further, inner-ear abnormalities were more frequently detected when IAC MRI was performed early after ISSNHL onset. Conclusions: Patients with ISSNHL and inner ear abnormalities such as intralabyrinthine hemorrhage or labyrinthitis identified via IAC MRI may experience poorer hearing outcomes. To detect such abnormal findings, it is recommended to perform IAC MRI early after the onset of ISSNHL.

Anatomical and Pathological Findings of Magnetic Resonance Imaging in Idiopathic Sudden Sensorineural Hearing Loss

  • Kim, Min Bum;Lim, Jihyun;Moon, Il Joon
    • Korean Journal of Audiology
    • /
    • v.24 no.4
    • /
    • pp.198-203
    • /
    • 2020
  • Background and Objectives: We sought to evaluate the diagnostic and prognostic value of measurable parameters of internal auditory canal (IAC) magnetic resonance imaging (MRI) in patients with idiopathic sudden sensorineural hearing loss (ISSNHL). Subjects and Methods: We retrospectively reviewed the patients with ISSNHL who underwent IAC MRI from January 2008 to March 2019. Measurable parameters of IAC MRI, such as the diameter of the IAC, bony cochlear nerve canal, and cross-sectional area of the cochlear nerve, were measured by a single examiner. These parameters were then compared between the affected and healthy sides. Inner-ear abnormalities such as intralabyrinthine hemorrhage or labyrinthitis were also evaluated. The relationship between the surveyed parameters and the diagnosis of ISSNHL was assessed. Results: A total of 208 patients with ISSNHL were included. The measured parameters of IAC MRI were not different between the affected and healthy sides and were also not associated with the diagnosis of ISSNHL. However, inner-ear abnormalities of IAC MRI in ISSNHL displayed a significant association with worse hearing before and after treatment. An age that was older than 40 years also correlated with poorer outcomes. Further, inner-ear abnormalities were more frequently detected when IAC MRI was performed early after ISSNHL onset. Conclusions: Patients with ISSNHL and inner ear abnormalities such as intralabyrinthine hemorrhage or labyrinthitis identified via IAC MRI may experience poorer hearing outcomes. To detect such abnormal findings, it is recommended to perform IAC MRI early after the onset of ISSNHL.

Preparation by the double extraction process with preliminary neutron irradiation of yttria or calcia stabilised cubic zirconium dioxide microspheres

  • Brykala, Marcin;Walczak, Rafal;Wawszczak, Danuta;Kilim, Stanislaw;Rogowski, Marcin;Strugalska-Gola, Elzbieta;Olczak, Tadeusz;Smolinski, Tomasz;Szuta, Marcin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.188-198
    • /
    • 2021
  • A modern approach to nuclear energy involves reprocessing like transmutations of spent nuclear fuel products to reduce their radiotoxicity and time needed for their storage. For this purpose, they are immobilized in inert matrices made of zirconia and can be "burned" in fast neutron reactor or Accelerator Driven System. These matrices in spherical form can be obtained by sol-gel process. The paper presents a method of microspheres fabrication based on the combined Complex Sol-Gel Process and double extraction process consisting in the preparation of zirconium-ascorbate sol and simultaneous extraction of water and nitrates. The procedure allows obtaining gel microspheres with a diameter of 50 ㎛, which after heat treatment are processed into the final product. The synthesis of zirconia microspheres with Yttrium by internal gelation process is well known for over a decade now. However, the explanation and characterization of synthesis of such material by extraction of water process is rarely found. Parameters such as: pH, viscosity, shape, sphericity and crystal structure have been determined for synthesized products and semi-products. In addition, preliminary research consisting in irradiation of the obtained materials in fast and thermal neutron flux was carried out. The obtained results are presented and described in this work.

Mechanical behavior of coiled tubing over wellhead and analysis of its effect on downhole buckling

  • Zhao, Le;Gao, Mingzhong;Li, Cunbao;Xian, Linyun
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.199-210
    • /
    • 2022
  • This study build finite element analysis (FEA) models describing the bending events of coiled tubing (CT) at the wellhead and trips into the hole, accurately provide the state of stress and strain while the CT is in service. The bending moment and axial force history curves are used as loads and boundary conditions in the diametrical growth models to ensure consistency with the actual working conditions in field operations. The simulation diametrical growth results in this study are more accurate and reasonable. Analysis the factors influencing fatigue and diametrical growth shows that the internal pressure has a first-order influence on fatigue, followed by the radius of the guide arch, reel and the CT diameter. As the number of trip cycles increase, fatigue damage, residual stress and strain cumulatively increase, until CT failure occurs. Significant residual stresses remain in the CT cross-section, and the CT exhibits a residual curvature, the initial residual bending configuration of CT under wellbore constraints, after running into the hole, is sinusoidal. The residual stresses and residual bending configuration significantly decrease the buckling load, making the buckling and buckling release of CT in the downhole an elastic-plastic process, exacerbating the helical lockup. The conclusions drawn in this study will improve CT models and contribute to the operational and economic success of CT services.

A Study on the Gap Test for Safe Storage of Explosives (안전한 화약류 저장을 위한 순폭 실험 연구)

  • Kim, Jun-Ha;Jung, Seung-Won;Kim, Jung-Gyu
    • Explosives and Blasting
    • /
    • v.40 no.3
    • /
    • pp.33-43
    • /
    • 2022
  • In order to minimize the impact on the structure during an internal explosion, the explosives storage must be kept at a distance from the inner wall to prevent the sympathetic detonation of the others explosives in an unexpected explosion. For safe explosives storage, a gap test was conducted by simulating the split arrangement of explosives inside the storage. In this study, the separation distance and arrangement between the emulsion explosives were applied differently to be sympathetic detonation at 2D of diameter and non-detonated at 2.5D. Considering the coefficient of detonation transmission and the size of the explosives storage, the explosive amount of 3kg was set, and most of the gap tests according to various arrangement changes were non-detonated, and safety was confirmed when applying the batch.

Study of cracks in compressed concrete specimens with a notch and two neighboring holes

  • Vahab, Sarfarazi;Kaveh, Asgari;Shirin, Jahanmiri;Mohammad Fatehi, Marji;Alireza Mohammadi, Khachakini
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.317-330
    • /
    • 2022
  • This paper investigated computationally and experimentally the interaction here between a notch as well as a micropore under uniaxial compression. Brazilian tensile strength, uniaxial tensile strength, as well as biaxial tensile strength are used to calibrate PFC2d at first. Then, uniaxial compression test was conducted which they included internal notch and micro pore. Experimental and numerical building of 9 models including notch and micro pore were conducted. Model dimensions of models are 10 cm × 10 cm × 5 cm. Joint length was 2 cm. Joints angles were 30°, 45° and 60°. The position of micro pore for all joint angles was 2cm upper than top of the joint, 2 cm upper than middle of joint and 2 cm upper than the joint lower tip, discreetly. The numerical model's dimensions were 5.4 cm × 10.8 cm. The fractures were 2 cm in length and had angularities of 30, 45, and 60 degrees. The pore had a diameter of 1 cm and was located at the top of the notch, 2 cm above the top, 2 cm above the middle, and 2 cm above the bottom tip of the joint. The uniaxial compression strength of the model material was 10 MPa. The local damping ratio was 0.7. At 0.016 mm per second, it loaded. The results show that failure pattern affects uniaxial compressive strength whereas notch orientation and pore condition impact failure pattern. From the notch tips, a two-wing fracture spreads almost parallel to the usual load until it unites with the sample edge. Additionally, two wing fractures start at the hole. Both of these cracks join the sample edge and one of them joins the notch. The number of wing cracks increased as the joint angle rose. There aren't many AE effects in the early phases of loading, but they quickly build up until the applied stress reaches its maximum. Each stress decrease was also followed by several AE effects. By raising the joint angularities from 30° to 60°, uniaxial strength was reduced. The failure strengths in both the numerical simulation and the actual test are quite similar.