Browse > Article
http://dx.doi.org/10.1016/j.net.2020.06.032

Preparation by the double extraction process with preliminary neutron irradiation of yttria or calcia stabilised cubic zirconium dioxide microspheres  

Brykala, Marcin (Institute of Nuclear Chemistry and Technology (ICHTJ))
Walczak, Rafal (Institute of Nuclear Chemistry and Technology (ICHTJ))
Wawszczak, Danuta (Institute of Nuclear Chemistry and Technology (ICHTJ))
Kilim, Stanislaw (National Centre for Nuclear Research (NCBJ))
Rogowski, Marcin (Institute of Nuclear Chemistry and Technology (ICHTJ))
Strugalska-Gola, Elzbieta (National Centre for Nuclear Research (NCBJ))
Olczak, Tadeusz (Institute of Nuclear Chemistry and Technology (ICHTJ))
Smolinski, Tomasz (Institute of Nuclear Chemistry and Technology (ICHTJ))
Szuta, Marcin (National Centre for Nuclear Research (NCBJ))
Publication Information
Nuclear Engineering and Technology / v.53, no.1, 2021 , pp. 188-198 More about this Journal
Abstract
A modern approach to nuclear energy involves reprocessing like transmutations of spent nuclear fuel products to reduce their radiotoxicity and time needed for their storage. For this purpose, they are immobilized in inert matrices made of zirconia and can be "burned" in fast neutron reactor or Accelerator Driven System. These matrices in spherical form can be obtained by sol-gel process. The paper presents a method of microspheres fabrication based on the combined Complex Sol-Gel Process and double extraction process consisting in the preparation of zirconium-ascorbate sol and simultaneous extraction of water and nitrates. The procedure allows obtaining gel microspheres with a diameter of 50 ㎛, which after heat treatment are processed into the final product. The synthesis of zirconia microspheres with Yttrium by internal gelation process is well known for over a decade now. However, the explanation and characterization of synthesis of such material by extraction of water process is rarely found. Parameters such as: pH, viscosity, shape, sphericity and crystal structure have been determined for synthesized products and semi-products. In addition, preliminary research consisting in irradiation of the obtained materials in fast and thermal neutron flux was carried out. The obtained results are presented and described in this work.
Keywords
Yttria stabilised zirconia; Calcia stabilised zirconia; Sol-gel; Double extraction process; Microspheres; Neutron irradiation; Complex Sol-Gel Process;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Szuta, S. Kilim, E. Strugalska-Gola, M. Bielewicz, N. Zamiatin, A. Shafronovskaia, S. Tyutyunnikov, Comparison of two fast neutron fluence measurement methods based on Np-237 fission-capture ratio measurement (spectral index) and a reverse dark current measurement in a planar silicon detector, Eur. Phys. J. Web Conf. 138 (10006) (2017), https://doi.org/10.1051/epjconf/201713810006.
2 M.S. Rezaei, M. Alavi, S. Sahebdelfar, Y. Zi-Feng, Synthesis of pure tetragonal zirconium oxide with high surface area, J. Mater. Sci. 42 (2007) 1228-1237, https://doi.org/10.1007/s10853-006-0079-7.   DOI
3 W.L. Gonga, W. Lutzeb, R.C. Ewing, Zirconia ceramics for excess weapons plutonium waste, J. Nucl. Mater. 277 (2000) 239-249, https://doi.org/10.1016/S0022-3115(99)00195-6.   DOI
4 V.B. Raghavendra, S. Naik, M. Antony, G. Ramalingam, M. Rajamathi, S. Raghavan, et al., Amorphous, monoclinic, and tetragonal porous zirconia through a controlled self-sustained combustion route, J. Am. Ceram. Soc. 94 (2011) 1747-1755, https://doi.org/10.1111/j.1551-2916.2010.04334.x.   DOI
5 M. Li, S. Zhang, L. Lv, M. Wang, W. Zhang, B. Pan, A thermally stable mesoporous ZrO2-CeO2-TiO2 visible light photocatalyst, Chem. Eng. J. 229 (2013) 118-125, https://doi.org/10.1016/j.cej.2013.05.106.   DOI
6 V.S. Bergamaschi, F.M. Carvalho, C. Rodrigues, D.B. Fernandes, Preparation and evaluation of zirconia microspheres as inorganic exchanger in adsorption of copper and nickel ions and as catalyst in hydrogen production from bioethanol, Chem. Eng. J. 112 (2005) 153-158, https://doi.org/10.1016/j.cej.2005.04.016.   DOI
7 A. Deptula, W. Lada, T. Olczak, T. Zoltowski, A. Di Bartolomeo, Preparation of spherical powders of YBa2Cu3O7-x superconductor by sol-gel process, in: P. Vincencini (Ed.), High Temperature Superconductors, Elsevier Science Publisher B.V, 1991.
8 M. Brykala, A. Deptula, M. Rogowski, W. Lada, Modification of ICHTJ sol gel process for preparation of medium sized ceramic spheres (Ø < 100 ㎛), Ceram. Int. 41 (2015) 13025-13033, https://doi.org/10.1016/j.ceramint.2015.07.002.   DOI
9 T. Wang, Q. Yu, J. Kong, C. Wong, Synthesis and heat-insulating properties of yttria-stabilized ZrO2 hollow fibers derived from a ceiba template, Ceram. Int. 43 (2017) 9296-9302, https://doi.org/10.1016/j.ceramint.2017.04.090.   DOI
10 M. Brykala, A. Deptula, M. Rogowski, W. Lada, T. Olczak, D. Wawszczak, T. Smolinski, P. Wojtowicz, G. Modolo, Synthesis of microspheres of triuranium octaoxide by simultaneous water and nitrate extraction from ascorbateuranyl sols, J. Radioanal. Nucl. Chem. 299 (2014) 651-655, https://doi.org/10.1007/s10967-013-2763-9.   DOI
11 IAEA, Sol-gel processes for fuel fabrication, in: Proceedings Panel, Organized by IAEA, Vienna, 1973.
12 Q. Mistarihi, M.A. Umer, J.H. Kim, S.H. Hong, H.J. Ryu, Fabrication of ZrO2-based nanocomposites for transuranic element-burning inert matrix fuel, Nucl. Eng. Technol. 47 (2015) 617-623, https://doi.org/10.1016/j.net.2015.05.003.   DOI
13 B. Valentin, H. Palancher, C. Yver, V. Garat, S. Massara, Heterogeneous Minor Actinide Transmutation on a UO2 blanket and on (U,Pu)O2 fuel in a SFR - preliminary design of pin and assembly, Proc. Int. Conf. GLOBAL (2009) Paper 9355. Paris, France, Sept. 6-11, 2009.
14 S. Inan, Y. Altas, Preparation of zirconiumemanganese oxide/polyacrylonitrile (ZreMn oxide/PAN) composite spheres and the investigation of Sr(II) sorption by experimental design, Chem. Eng. J. 168 (2011) 1263-1271, https://doi.org/10.1016/j.cej.2011.02.038.   DOI
15 H. Zhang, H. Lu, Y. Zhu, F. Li, R. Duan, M. Zhang, X. Wang, Preparations and characterizations of new mesoporous ZrO2 and Y2O3-stabilized ZrO2 spherical powders, Powder Technol. 227 (2012) 9-16, https://doi.org/10.1016/j.powtec.2012.02.007.   DOI
16 J. Widoniak, S. Eiden-Assmann, G. Maret, Synthesis and characterization of monodisperse zirconia particles, Eur. J. Inorg. Chem. 15 (2005) 3149-3155, https://doi.org/10.1002/ejic.200401025.   DOI
17 C. Degueldre, Zirconia inert matrix for plutonium utilisation and minor actinides disposition in reactors, J. Alloys Compd. 444-445 (2007) 36-41, https://doi.org/10.1016/j.jallcom.2006.11.203.   DOI
18 R.B. Heimann, T.T. Vandergraaf, Cubic zirconia as a candidate waste form for actinides: dissolution studies, J. Mater. Sci. Lett. 7 (1988) 583-586, https://doi.org/10.1007/BF01730301.   DOI
19 A. Fernandez, R.J. Konings, J. Somers, Design and fabrication of specific ceramicemetallic fuels and targets, J. Nucl. Mater. 319 (2003) 44-50, https://doi.org/10.1016/S0022-3115(03)00132-6.   DOI
20 E.A. Schneider, M.R. Deinert, S.T. Herring, K.B. Cady, Burnup simulations and spent fuel characteristics of ZrO2 based inert matrix fuels, J. Nucl. Mater. 361 (2007) 41-51, https://doi.org/10.1016/j.jnucmat.2006.10.021.   DOI
21 W. Pyda, K. Haberko, CaO-containing tetragonal ZrO2 polycrystals (Ca-TZP), Ceram. Int. 13 (1987) 113-118, https://doi.org/10.1016/0272-8842(87)90048-4.   DOI
22 S. Zhao, J. Ma, X. Lin, X. Cheng, X. Zhao, S. Hao, Z. Li, C. Deng, B. Liu, Preparation of tetragonal zirconia microspheres as surrogate precursor for uranium nitride microspheres, Nucl. Eng. Des. 362 (2020) 110542, https://doi.org/10.1016/j.nucengdes.2020.110542.   DOI
23 H. Uchiyama, K. Takagi, H. Kozuka, Solvothermal synthesis of size-controlled ZrO2 microspheres via hydrolysis of alkoxides modified with acetylacetone, Colloid. Surface. Physicochem. Eng. Aspect. 403 (2012) 121-128, https://doi.org/10.1016/j.colsurfa.2012.03.065.   DOI
24 A. Ghazanfari, W. Li, M.C. Leu, J.L. Watts, G.E. Hilmas, Additive manufacturing and mechanical characterization of high density fully stabilized zirconia, Ceram. Int. 43 (2017) 6082-6088, https://doi.org/10.1016/j.ceramint.2017.01.154.   DOI
25 CNEN - Comitato Nazionale Energia Nucleare, I procesii sol-gel per a la Produzione di Combustibili ceramici, (Proc. Int. Nucl. Symp. Turin) Rome (1968).
26 A. Deptula, W. Lada, T. Olczak, R.Z. Le Geros, J.P. Le Geros, Preparation of calcium phosphate coatings by complex sol- gel process (CSGP), Bioceramics 9 (1996) 313-316.
27 T. Smolinski, A. Deptula, T. Olczak, W. Lada, M. Brykala, P. Wojtowicz, D. Wawszczak, M. Rogowski, F. Zaza, Perovskite synthesis via complex sol-gel process to immobilize radioactive waste elements, J. Radioanal. Nucl. Chem. 299 (2014) 675-680, https://doi.org/10.1007/s10967-013-2835-x.   DOI
28 M. Brykala, M. Rogowski, The Complex Sol-Gel Process for producing small ThO2 microspheres, J. Nucl. Mater. 473 (2016) 249-255, https://doi.org/10.1016/j.jnucmat.2016.03.004.   DOI
29 IAEA, Sol-gel processes for ceramic nuclear fuels, in: Proceedings of a Panel Sponsored by IAEA, Vienna, 1968.
30 J. Frana, Program DEIMOS32 for gamma ray spectra evaluation, J. Radioanal. Nucl. Chem. 257 (2003) 583-587, https://doi.org/10.1023/A:1025448800782.   DOI
31 C. Schreinemachers, G. Leinders, G. Modolo, M. Verwerft, K. Binnemans, T. Cardinael, The conversion of ammonium uranate prepared via sol-gel synthesis into uranium oxides, Nucl. Eng. Technol. 52 (2020) 1013-1021, https://doi.org/10.1016/j.net.2019.11.004.   DOI
32 P.G. Medvedev, S.M. Frank, T.P. O'Holleran, M. Meyer, Dual phase MgO-ZrO2 ceramics for use in LWR inert matrix fuel, J. Nucl. Mater. 342 (2005) 48-62, https://doi.org/10.1016/j.jnucmat.2005.03.017.   DOI
33 C. Degueldre, J.M. Paratte, Basic properties of a zirconia-based fuel material for light water reactors, Nucl. Tech. 123 (1998) 21-29, https://doi.org/10.13182/NT98-A2876.   DOI
34 M. Preda, H.H. Rehner, C. Nicolescu, The stabilization of zirconium dioxide in the ternary system CaO-TiO2-ZrO2, J. Eur. Ceram. Soc. 17 (1997) 891-896, https://doi.org/10.1016/S0955-2219(96)00168-9.   DOI
35 Y.B. Khollam, A.S. Deshpande, A.J. Patil, H.S. Potdar, S.B. Deshpande, S.K. Date, Synthesis of yttria stabilized cubic zirconia (YSZ) powders by microwav-hydrothermal route, Mater. Chem. Phys. 71 (2001) 235-241, https://doi.org/10.1016/S0254-0584(01)00287-5.   DOI
36 J. Widoniak, S. Eiden-Assmann, G. Maret, Synthesis and characterization of porous and non-porous monodisperse TiO2 and ZrO2 particles, Colloid. Surface. Physicochem. Eng. Aspect. 270-271 (2005) 329-334, https://doi.org/10.1021/cm0348949.   DOI
37 M. Brykala, M. Rogowski, Preparation of microspheres of carbon black dispersion in uranyl-ascorbate gels as precursors for uranium carbide, Prog. Nucl. Energy 89 (2016) 132-139, https://doi.org/10.1016/j.pnucene.2016.02.015.   DOI
38 J.A. Wang, M.A. Valenzuela, J. Salmones, A. Vazquez, A. Garcia-Ruiz, X. Bokhimi, Comparative study of nanocrystalline zirconia prepared by precipitation and sol-gel methods, Catal. Today 68 (2001) 21-30, https://doi.org/10.1016/S0920-5861(01)00319-4.   DOI
39 H. Xu, H. Du, J. Liu, A. Guo, Preparation of sub-micron porous yttria-stabilized ceramics with ultra-low density by a TBA-based gel-casting method, Chem. Eng. J. 173 (2011) 251-257, https://doi.org/10.1016/j.cej.2011.07.061.   DOI
40 R.H. Nielsen, G. Wilfing, Zirconium and zirconium compounds, in: Ullmann's Encyclopedia of Industrial Chemistry, 2010, https://doi.org/10.1002/14356007.a28_543.pub2.