• Title/Summary/Keyword: Internal Combustion

Search Result 729, Processing Time 0.026 seconds

A Study on the Numerical Analysis of Behavior of Spray Droplets and Internal Flow Field of Cylinder in Diesel Engine (디젤기관의 실린더내 유동 및 분무액적 거동의 수치적 연구(I))

  • 장영준;박호준;전충환;김진원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.35-46
    • /
    • 1992
  • In this study, we calculated gas flow fields and distribution of fuel droplet and mass fraction using the CONCHAS-SPRAY code which modified to execute in IBM PC and changed three important factors, injection rate pattern (BASIC, I, II, III), different bowl shape and spray type. Especially vortices which be influenced by fuel-air mixing process, evaporation and flame propagation are generated more strongly in the bowl-piston type combustion chamber than in the flat-piston type. As the spray type changes, it is found that conical type produced large and strong vortices and fuel droplets are effictively diffused into the entire combustion chamber. As the injection rate pattern changes I, II, III based on BASIC type, we confirmed that End-of-Injection Effect strongly influence on droplets life time.

  • PDF

Development of a New Concept Rotary Engine (II) - Performance Analysis of Real Cycle - (신개념 로터리 엔진의 개발(II) - 실제 사이클의 성능 분석 -)

  • 오문근;박원엽;이승규
    • Journal of Biosystems Engineering
    • /
    • v.28 no.4
    • /
    • pp.285-294
    • /
    • 2003
  • This study was carried out to propose a new-concept internal combustion engine which has great potential advantages to the conventional engines. Proposed new-concept engine is a kind of rotary engine. A rotor is rotating concentrically in a cylinder which is divided into two partitioning valves, and it makes four compartments in the cylinder. The volumes of each of four compartments are changing continuously with the rotor movement and performs the functions of intake, compression. expansion and exhaust simultaneously. Expected thermal efficiency for the real cycle is 26 percent at conditions of 1,000 rpm and compression ratio of 8.0, which is 3 to 4 percent higher than that of the conventional engines such as the piston engine, gas turbine and Wankel rotary engine. A simulation procedure proved that the new concept engine is functional, and has many potential advantages compared to the existing conventional engines.

Analysis of Electro-magnetic Interference Noise for Eco-friendly Vehicle (친환경 자동차의 전자파 방사 노이즈 특성 분석)

  • Kim, Hae-Sung;Yong, Boo-Joong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.76-81
    • /
    • 2011
  • Fossil fuel, the energy source of internal combustion engine automobiles, is limited in resource and has caused environmental issues for decades. Accordingly, automobile manufacturers from many countries around the world are developing or producing eco-friendly vehicles that utilize alternative sources of energy. These vehicles are equipped with many electronic and electrical components which operate on high voltage and/or large current that were not used in conventional combustion engine automobiles. In this paper, in order to analyze the electro-magnetic interference noise, electric vehicles and fuel cell electric vehicles are tested under the guidelines of KMVSS (Korean Motor Vehicle Safety Standards) as well as under test modes that are not stipulated under the guidelines.

Development of Pyrogen Igniter for Kick Motor

  • Koh, Hyeon-Seok;Kil, Gyoung-Sub;Cho, In-Hyun;Kim, Yong-Woon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.301-306
    • /
    • 2008
  • A pyrogen igniter was designed to satisfy the required condition of kick motor system for the space launch vehicle. We analyzed the ignition characteristics and performed the combustion tests to verify the internal ballistic performance. In the design process, the arc-image test was carried out to find the sufficient heat flux as varying the initial pressure from 10 to 700kPa. The analysis indicated that the initial pressure condition would delay ignition time within a range from 100 to 500ms. The combustion test with an inert chamber was also performed to understand the ignition characteristics with the variation of the initial pressure of free chamber volume. Finally, we confirmed that the igniter could provide the acceptable energy to ignite the propellant of kick motor at the ground test. The result of the ground tests showed that the ignition delay time was within the design range at the atmospheric pressure condition.

  • PDF

Characteristics of the Co-Combustion of Coal and Bio-Solid Fuel using Biomass as an adjunct (석탄과 보조제로 바이오매스를 사용한 바이오 고형연료의 혼소 특성)

  • Hyeon, Wan-Su;Jin, Yong-Gyun;Jo, Eun-Ji;Han, Hyun-Goo;Min, Seon-Ung;Yeo, Woon-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.2
    • /
    • pp.49-57
    • /
    • 2020
  • Due to the sewage sludge's characteristics of high water content and low calorific value, it is hard to use sewage sludge as an energy source. In this study, we investigated production of bio-solid fuel which is mixed both sewage sludge and woody biomass in order to improve the sewage sludge's characteristics and replace fossil fuels. A thermogravimetric analysis was used to investigate the co-combustion characteristics of the mixed coal and bio-solid fuel of 5%, 10%, 15%, respectively. The analysis was carried out under non-isothermal conditions by raising the internal temperature of 25℃ to 900℃ with an increment of 10℃/min. In the case of comparing single coal sample and mixture sample of coal and bio-solid fuel, the initiation combustion temperature has slightly changed. However, both the maximum combustion temperature and the termination start combustion temperature were hardly noticeable. The initiation combustion was occurred between 200~315℃ and the thermal decomposition causing a significant weight change occurred between 350~700℃. As a result of the kinetic analysis of the co-combustion, the activation energy was decreased as the mixing rate was higher. Therefore, it is able to co-combust the mixed coal and bio-solid fuel in power plants.

Visualization for Internal Flow of Submerged-Nozzle SRM by Cold Air-flow Test (내삽노즐 고체로켓의 공기 유동모사시험을 통한 내부유동 가시화)

  • Kim, Do-Hun;Cho, Yong-Ho;Lee, Yeol;Koo, Ja-Ye;Kim, Yoon-Gon;Kang, Moon-Jung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.181-185
    • /
    • 2010
  • The behavior of combustion-induced internal flow of SRM equipped with fin-slot grain and submerged nozzle is very complex and diverse. Cold air-flow test for 2D and 3D scale models of SRM has been done in order to specify the visualization method to analyze particular internal flow patterns such as roll-torque inducing flow. Swirl flow induced by asymmetric vortical tube also has been visualized through employing various light source and recording directions.

  • PDF

Study of the Risk of Ignition due to Internal Combustion Engines in Areas with Potentially Explosive Gas Atmospheres (잠재적 폭발위험장소에서 내연기관에 의한 점화 위험성에 관한 연구)

  • Kim, Yun Seok;Rie, Dong Ho
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.1-8
    • /
    • 2016
  • Safety management in hazardous areas with potentially explosive gas atmospheres (here in after referred to as hazardous areas) in large scale facilities dealing with combustible or flammable materials at home and abroad is very important (significant) for the coexistence of the company and local society based on business continuity management (BCM) and reliance. For the safety management in hazardous areas, two systems are mainly used: (1) the control system for the prevention of combustible or flammable substances and (2) the explosion proof system for the elimination of ignition sources when flammable gases are leaked to inhibit the transition to fire or explosion accidents. While technology and regulations on explosion proof facilities or devices for electrical ignition sources are well developed and defined, those for thermal ignition sources need to be more developed and established. In this study, the internal combustion engine in hazardous areas was investigated to determine the risk of ignition. For this purpose, document searches were conducted on the relevant international standards and accidents cases and risk analysis reports. In addition, this study assessed the application cases of the diesel engine's safety equipment, such as spark arresters regarding the site of process safety management (PSM) system in central Korea. To practically apply these results to the hydrocarbon industry, the safety management method for explosion prevention in hazardous areas was provided by risk identification for ignition sources of internal combustion engines, such as diesel engines.

An Empirical Study on Real-Time Temperature and Concentration Measurement Through Optical Absorption Characteristic Analysis of Gas in a Large Combustion System (가스의 광 흡수 특성 분석을 통한 대형 연소시스템 내 실시간 온도 및 농도 계측에 관한 실증 연구)

  • Park, Jiyeon;So, Sunghyun;Park, Daeguen;Ryu, Changkook;Lee, Changyeop;Yoo, Miyeon
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.5
    • /
    • pp.29-38
    • /
    • 2020
  • It is practically difficult to accurately measure the temperature and concentration of a large combustion systems at industrial sites in real time. Temperature measurement using thermocouple, which are mainly used, is a point-measuring method that is less accurate and less reliable to analyze the wide area range of inner combustion system, and has limitations to internal accessibility. In terms of concentration analysis, most measurement methods use sampling method, which are limited by the difficulty of real-time measurement. As a way to overcome these limitations, laser-based measurement methods have been developed continuously. Laser-based measurement are line-average measurement methods with high representation and precision, which are beneficial for the application of large combustion systems. In this study the temperature and concentration were measured in real time by water vapor and oxygen generated during combustion using Tunable Diode Laser Absorption Spectroscopy (TDLAS). The results showed that the average temperature inside the combustion system was 1330℃ and the mean oxygen concentration was 3.3 %, which showed similar tendency with plant monitoring data.

Effect of Injector Design on Combustion Characteristics of Full-scale Gas Generators (분사기 설계에 따른 실물형 가스발생기 연소특성 비교)

  • Ahn, Kyu-Bok;Seo, Seong-Hyeon;Lee, Kwang-Jin;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.309-315
    • /
    • 2006
  • Effects of injector or design on combustion characteristics of full-scale gas generators were studied. Three full-scale gas generators, which have same total mass flow rate but mass flow rate per injector is different depending on their designs, were manufactured. Thirteen, nineteen and thirty seven injectors, which have internal-mixing and double-swirl characteristics, are distributed in injector heads, respectively. The results showed that special pressure fluctuations in the gas generators with 13 and 19 injectors didn't appear around longitudinal resonant frequency, but small longitudinal-mode instability appeared in the gas generator with 37 injectors. As the number of injectors installed in injector heads increased, temperature distribution in combustion chambers showed small deviations, but the damage of LOx posts increased.

  • PDF

Numerical Analysis of Effect of Inhomogeneous Pre-mixture on Pressure Rise Rate in HCCI Engine by Using Multizone Chemical Kinetics (화학반응수치해석을 이용한 HCCI기관의 예혼합기의 성층화성이 연소시의 압력 상승률에 미치는 영향)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.449-456
    • /
    • 2010
  • The HCCI engine is a prospective internal combustion engine with which high diesel-like efficiencies and very low NOx and particulate emissions can be achieved. However, several technical issues must be resolved before HCCI engines can be used for different applications. One of the issues concerning the HCCI engine is that the operating range of this engine is limited by the rapid pressure rise caused by the release of excessive heat. This heat release is because of the self-accelerated combustion reaction occurring in the engine and the resulting engine knock in the high-load region. The purpose of this study is to evaluate the role of thermal stratification and fuel stratification in reducing the pressure rise rate in an HCCI engine. The concentrations of NOx and CO in the exhaust gas are also evaluated to confirm combustion completeness and NOx emission. The computation is carried out with the help of a multizone code, by using the information on the detailed chemical kinetics and the effect of thermal and fuel stratification on the onset of ignition and rate of combustion. The engine is fueled with dimethyl ether (DME), which allows heat release to occur in two stages, as opposed to methane, which allows for heat release in a single stage.