• 제목/요약/키워드: Internal Cavity

검색결과 396건 처리시간 0.026초

Malignant Mesothelioma Diagnosed by Bronchoscopic Biopsy

  • Park, Yeon-Hee;Choi, Jae-Woo;Jung, Sang-Ok;Cho, Min-Ji;Kang, Da-Hyun;Chung, Chae-Uk;Park, Dong-Il;Moon, Jae-Young;Park, Hee-Sun;Jung, Sung-Soo;Kim, Ju-Ock;Kim, Sun-Young;Lee, Jeong-Eun
    • Tuberculosis and Respiratory Diseases
    • /
    • 제78권3호
    • /
    • pp.297-301
    • /
    • 2015
  • Malignant mesothelioma is a rare malignant neoplasm that arises from mesothelial surfaces of the pleural cavity, peritoneal cavity, tunica vaginalis, or pericardium. Typically, pleural fluid cytology or closed pleural biopsy, surgical intervention (video thoracoscopic biopsy or open thoracotomy) is conducted to obtain pleural tissue specimens. However, endobronchial lesions are rarely seen and cases diagnosed from bronchoscopic biopsy are also rarely reported. We reported the case of a 77-year-old male who was diagnosed as malignant mesothelioma on bronchoscopic biopsy from obstructing masses of the endobronchial lesion.

배농후 기흉으로 오인된 공동성 폐농양 (Cavitary Lung Abscess Mistaken for Pneumothorax after Drainage of Pus)

  • 홍범기;장중현;김세규;김성규;이원영
    • Tuberculosis and Respiratory Diseases
    • /
    • 제40권4호
    • /
    • pp.449-453
    • /
    • 1993
  • A 64-year-old male was admitted due to abruptly developed, severe dyspnea via local clinic. He had been a heavy smoker and alcoholic for a long time. Chest PA showed huge haziness in right upper lung field. Sputum culture for bacteriology was positive for Klebsiella pneumoniae. Immediately, appropriate antibiotics were administered and artificial ventilation was started. On 40th hospital day, simple chest roentgenogram taken due to sudden aggravated dyspnea showed marked hyperlucency in right upper lung field, suggestive of rupture of abscess cavity and resultant pneumothorax. At that time, chest tube was inserted but air leakage from the chest tube persisted. Chest CT scan taken after chest tube insertion showed the tube inserted into a thin-walled cavity in the above lesion. on 84th hospital day, right upper lobectomy with decortication was performed. Pathologically, cavittary lung abscess was diagnosed on the findings of partial re-epithelialization of ciliated columnar epithelium with severe pulmonary vascular occlusion and extensive fibrous pleural adhesions.

  • PDF

기관지내 아스페르길루스종 1예 (A Case of Endobronchial Aspergilloma)

  • 김순종;이응준;이태훈;유광하;이계영
    • Tuberculosis and Respiratory Diseases
    • /
    • 제61권1호
    • /
    • pp.60-64
    • /
    • 2006
  • Pulmonary aspergillosis presents as the following three different types depending on the immune status of the host: invasive aspergillosis, allergic bronchopulmonary aspergillosis (ABPA), and aspergilloma. Aspergilloma develops as a result of an aspergillus growth inside a pre-existing lung cavity. However, endobronchial aspergilloma without a lung parenchymal lesion is quite rare. We encountered a case of endobronchial aspergilloma that developed in a healthy 75 year-old woman that led to necrotizing pneumonia of the right lower lobe. The chief complaints were fever, cough and yellowish sputum. The chest film revealed haziness with cavity-like shadows on the right lower lobe, and the chest CT scan showed endobronchial calcified density in the basal bronchus of the right lower lobe with peribronchial lymph node enlargement. Bronchoscopy revealed an obstruction of the basal orifice of the right lower lobe by blackish stone-like material, and the aspergilloma was confirmed by the bronchoscopic biopsy. The pneumonia improved after bronchoscopic removal of this lesion. We report this case along with a review of the relevant literature.

Effects of macroporosity and double porosity on noise control of acoustic cavity

  • Sujatha, C.;Kore, Shantanu S.
    • Advances in aircraft and spacecraft science
    • /
    • 제3권3호
    • /
    • pp.351-366
    • /
    • 2016
  • Macroperforations improve the sound absorption performance of porous materials in acoustic cavities and in waveguides. In an acoustic cavity, enhanced noise reduction is achieved using porous materials having macroperforations. Double porosity materials are obtained by filling these macroperforations with different poroelastic materials having distinct physical properties. The locations of macroperforations in porous layers can be chosen based on cavity mode shapes. In this paper, the effect of variation of macroporosity and double porosity in porous materials on noise reduction in an acoustic cavity is presented. This analysis is done keeping each perforation size constant. Macroporosity of a porous material is the fraction of area covered by macro holes over the entire porous layer. The number of macroperforations decides macroporosity value. The system under investigation is an acoustic cavity having a layer of poroelastic material rigidly attached on one side and excited by an internal point source. The overall sound pressure level (SPL) inside the cavity coupled with porous layer is calculated using mixed displacement-pressure finite element formulation based on Biot-Allard theory. A 32 node, cubic polynomial brick element is used for discretization of both the cavity and the porous layer. The overall SPL in the cavity lined with porous layer is calculated for various macroporosities ranging from 0.05 to 0.4. The results show that variation in macroporosity of the porous layer affects the overall SPL inside the cavity. This variation in macroporosity is based on the cavity mode shapes. The optimum range of macroporosities in poroelastic layer is determined from this analysis. Next, SPL is calculated considering periodic and nodal line based optimum macroporosity. The corresponding results show that locations of macroperforations based on mode shapes of the acoustic cavity yield better noise reduction compared to those based on nodal lines or periodic macroperforations in poroelastic material layer. Finally, the effectiveness of double porosity materials in terms of overall sound pressure level, compared to equivolume double layer poroelastic materials is investigated; for this the double porosity material is obtained by filling the macroperforations based on mode shapes of the acoustic cavity.

슬릿 노즐 내부 압력 분포와 코팅 박막 두께 균일도 간의 상관관계 연구 (Study on Correlation Between the Internal Pressure Distribution of Slit Nozzle and Thickness Uniformity of Slit-coated Thin Films)

  • 김기은;나정필;정모세;박종운
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.19-25
    • /
    • 2023
  • With an attempt to investigate the correlation between the internal pressure distribution of slit nozzle and the thickness uniformity of slot-coated thin films, we have performed computational fluid dynamics (CFD) simulations of slit nozzles and slot coating of high-viscosity (4,800 cPs) polydimethylsiloxane (PDMS) using a gantry slot-die coater. We have calculated the coefficient of variation (CV) to quantify the pressure and velocity distributions inside the slit nozzle and the thickness non-uniformity of slot-coated PDMS films. The pressure distribution inside the cavity and the velocity distribution at the outlet are analyzed by varying the shim thickness and flow rate. We have shown that the cavity pressure uniformity and film thickness uniformity are enhanced by reducing the shim thickness. It is addressed that the CV value of the cavity pressure that can ensure the thickness non-uniformity of less than 5% is equal to and less than 1%, which is achievable with the shim thickness of 150 ㎛. It is also found that as the flow rate increases, the average cavity pressure is increased with the CV value of the pressure unchanged and the maximum coating speed is increased. As the shim thickness is reduced, however, the maximum coating speed and flow rate decrease. The highly uniform PDMS films shows the tensile strain as high as 180%, which can be used as a stretchable substrate.

  • PDF

Usefulness of nasal cavity evaluation before high-resolution esophageal manometry in high-risk patients

  • Hyun Jin Min;Jae Yong Park
    • The Korean journal of internal medicine
    • /
    • 제39권1호
    • /
    • pp.86-94
    • /
    • 2024
  • Background/Aims: A catheter is inserted through the nasal cavity during high-resolution esophageal manometry (HRM), which may cause adverse events such as pain or epistaxis. Despite these possible safety considerations, studies on this subject are very limited. We aimed to investigate the usefulness of nasal cavity evaluation before HRM to reduce the risk of adverse events and test failure. Methods: Patients who underwent HRM after consultation with the ear-nose-throat department for nasal evaluation were retrospectively enrolled between December 2021 and May 2022. The included patients had a previous history of sinonasal disease or surgery or had subjective nasal discomfort. All patients answered the Sino-Nasal Outcome Test (SNOT-22) questionnaire, and subjective nasal discomfort was scored using a visual analog scale. Nasal endoscopy and acoustic rhinometry were performed for disease evaluation and volumetric assessment. Results: The analysis included 22 patients with a mean age of 58.9 years. The mean SNOT-22 score was 24.2, and 16 patients (72.7%) complained of subjective nasal obstruction. The HRM catheter was successfully inserted in 20 patients (90.9%), without any significant adverse events. The objective measurement outcomes of acoustic rhinometry and sinus endoscopy did not always correspond to subjective symptoms. Narrowed nasal airways unresponsive to decongestants were observed in two patients with failed catheter insertion. Conclusions: To reduce the risk of adverse events and test failure during HRM, a site-specific questionnaire to evaluate nasal obstruction might be helpful. When nasal obstruction is suspected, objective nasal cavity evaluation could be recommended for the safe and successful performance of HRM.

3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구 (NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO)

  • 문바울;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's $\kappa$-$\omega$ turbulence model. The flow field is observed to oscillate in the shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF

3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구 (NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO)

  • 문바울;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's ${\kappa}-{\varepsilon}$ turbulence model. The flow field is observed to oscillate in the "shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF

Cavity-dumping형 Nd:glass laser의 제작 및 특성 조사 (Investigation on the characteristics of a cavity-dumped Nd:glass laser)

  • 차용호;강응철;남창희
    • 한국광학회지
    • /
    • 제6권2호
    • /
    • pp.130-134
    • /
    • 1995
  • 이득 선폭이 넓고 가공이 쉬원 고출력 제이저의 증폭 이득 매질로 유리한 Nd:glass 이득 매질의 소신호 이득 계수를 측정하고 이 Nd:glass를 이용하여 제작한 cavity-dumping형 레이저의 출력 특성을 조사하였다. 소신호 이득 계수를 측정하기 위해 Nd:glass, Pockels cell, 편광분할기 등을 포함하는 공진기를 구성하였으며, 측정된 소신호 이극 계수는 전기 입력 에너지가 100J일 때 $0.088 cm_{-1}$ 공진기의 왕복 내부 손실은 56%였다. Cavity-dumping형 레이저 공진기는 곡률반경이 2m인 두개의 전반사경과 Nd:glass, Pickels cell, 편광분할기, $\lambda/4$ plate 등으로 구성되었으며 제작된 레이저의 출력 에너지는 전기 입력 에너지가 140J일 때, 최대 0.85J이었고 출력 레이저 펄스폭은 8ns였다.

  • PDF

와류진동 조절에 의한 유동가진 공동 내부의 음압 제어 (Control of Sound Pressure inside a Flow Excited Cavity by Regulation of Vorticity Shedding)

  • 박종범;황철호
    • 한국소음진동공학회논문집
    • /
    • 제17권12호
    • /
    • pp.1223-1229
    • /
    • 2007
  • Flow traveling over a cavity opening forms a vortex due to unstable shear layer and induces an aerodynamic pressure excitation from the diffusion of the vortex convecting out of the trailing edge of the opening. The interaction between the excitation force and the cavity response sustains resonance in the resonator(cavity) and locked-in vortex shedding at the leading edge of the opening. The aerodynamic excitation force can be described from the diffusion of the vortex over the trailing edge and the level of its diffusivity is related to the strength of vorticity seeded at the leading edge. In this study, the control scheme of the internal pressure oscillation was proposed from regulating the vorticity at the leading edge by use of an oscillating spoiler. It was found that the relative motion between the spoiler and the air mass at the cavity opening influenced vorticity strength and the control was achieved by direct feedback of the cavity pressure fluctuation to the actuator.