• 제목/요약/키워드: Intermolecular hydrogen-bond

검색결과 56건 처리시간 0.023초

Local Structure Study of Liquid Phase Ethylene Glycol and 1,3-propanediol through Density Functional Theory

  • Nam, Seungsoo;Sim, Eunji
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.140-146
    • /
    • 2016
  • Using density functional Theory, we studied local structure of liquid ethylene glycol and 1,3-propanediol. For both liquid, making intramolecular hydrogen bonding is not preferred, because relative energy between with and without intramolecular hydrogen bond is only -1.95kcal/mol, which is far less than intermolecular hydrogen bonding energy, about -7.5kcal/mol. Also, hydrogen bond induce polarization of hydroxyl group and make $2^{nd}$ hydrogen bond more stronger. This effect was small in intramolecular hydrogen bond of ethylene glycol. When considering energy per hydrogen bond, making only one intermolecular hydrogen bond for ethylene glycol pair is energetically favored, while two intermolecular hydrogen bond can be formed in 1,3-propanediol pair.

  • PDF

벤조페논 유도체의 자외선 차단 효과 및 염색물의 일광견뢰도에 미치는 영향 (The Effect of Benzophenone Derivatives on the Shielding of Ultraviolet Rays and Light-fastness of the Dyed Fabrics)

  • 김종규;김태경;박태수;임용진
    • 한국염색가공학회지
    • /
    • 제10권4호
    • /
    • pp.53-61
    • /
    • 1998
  • The absorptions of ultraviolet rays of benzophenone derivatives were investigated in terms of the position of substituent, especially hydroxyl group. When the derivatives were added to the aqueous solution of Rhodamin B, which has very low light-fastness, all of them delayed the photofading of Rhodamin B solution. But on the fabrics, only the derivatives with the hydroxyl group at 2-position showed the good ability of ultraviolet rays absorption. The benzophenone derivatives absorb ultraviolet rays to form a hydrogen bond between hydroxyl group and carbonyl group, and return to their original structure by releasing heat energy. In solution, the derivatives can form a intermolecular hydrogen bond, and absorb the ultraviolet rays. But on the fabric, the intermolecular hydrogen bond is impossible, only hydroxyl group of 2-position forms a intramolecular hydrogen bond, and that makes the derivatives on the fabric absorb ultraviolet rays.

  • PDF

Hydrogen Bonds in GlcNAc( β1,3)Gal( β)OMe in DMSO Studied by NMR Spectroscopy and Molecular Dynamics Simulations

  • Shim, Gyu-Chang;Shin, Jae-Min;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권2호
    • /
    • pp.198-202
    • /
    • 2004
  • Hydrogen bond is an important factor in the structures of carbohydrates. Because of great strength, short range, and strong angular dependence, hydrogen bonding is an important factor stabilizing the structure of carbohydrate. In this study, conformational properties and the hydrogen bonds in GlcNAc( ${\beta}$1,3)Gal(${\beta}$)OMe in DMSO are investigated through NMR spectroscopy and molecular dynamics simulation. Lowest energy structure in the adiabatic energy map was utilized as an initial structure for the molecular dynamics simulations in DMSO. NOEs, temperature coefficients, SIMPLE NMR data, and molecular dynamics simulations proved that there is a strong intramolecular hydrogen bond between O7' and HO3' in GlcNAc( ${\beta}$1,3)Gal(${\beta}$)OMe in DMSO. In aqueous solution, water molecule makes intermolecular hydrogen bonds with the disaccharides and there was no intramolecular hydrogen bonds in water. Since DMSO molecule is too big to be inserted deep into GlcNAc(${\beta}$1,3)Gal(${\beta}$)OMe, DMSO can not make strong intermolecular hydrogen bonding with carbohydrate and increases the ability of O7' in GlcNAc(${\beta}$1,3)Gal(${\beta}$)OMe to participate in intramolecular hydrogen bonding. Molecular dynamics simulation in conjunction with NMR experiments proves to be efficient way to investigate the intramolecular hydrogen bonding existed in carbohydrate.

The Crystal Structure of One Natural Compound Cyclo-(1,10-Docandiamino-11,20-Docanedioic) Amide (1,12-Diazacyclodocosane-2,11-Dione)

  • Wei, Wan-Xing;Pan, Yuan-Jiang
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권11호
    • /
    • pp.1527-1530
    • /
    • 2002
  • 1,12-diazacyclodocosane-2,11-dione was first isolated from a plant Phyllanthus niruri Linn. Its structure has been determined by means of spectroscopy methods and X-ray crystallography. Two peptide groups in the big ring (lactam) are the main factors influencing intermolecular contacts. The hydrogen-bond interaction of these hydrophilic groups is observed in the crystal structure. Meanwhile, C-H···O hydrogen bonds in molecules contribute to the formation of the whole crystal. These two kinds of hydrogen-bond form six- member rings among molecules. This compound crystallizes in the triclinic space group P-1 with a= 9.588(1) $\AA$, b= $9.850(1)\AA$, c = $11.810(1)\AA$, $\alpha=$ 68.18(1)$^{\circ}C$ , $\beta=$ 84.98(1), $\gamma$ = 86.03(1)$^{\circ}C$ , V = $1030.66(17)\AA3$ , Z = 2. A disorder of five-member carbon chain in the whole ring is observed in the title compound. The bond angle 105.8(4) is determined for a extreme configuration C(14)-C(15)-C(16), and 117.7(10) for another extreme configuration C(14')-C(15')-C(16'). In this crystal, two molecules are tied each other by short intermolecular hydrogen bonds, the oxygen atom being tied by hydrogen bond to nitrogen atom of another two molecules. The NMR and IR spectral data coincides to the structure of the compound.

Density Functional Theoretical Study on Intermolecular Interactions of 3,6-Dihydrazino-1,2,4,5-tetrazine Dimers

  • Hu, Yin;Ma, Hai-Xia;Li, Jun-Feng;Gao, Rong;Song, Ji-Rong
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2897-2902
    • /
    • 2010
  • Seven fully optimized geometries of 3,6-dihydrazino-1,2,4,5-tetrazine (DHT) dimers have been obtained with density functional theory (DFT) method at the B3LYP/$6-311++G^{**}$ level. The intermolecular interaction energy was calculated with zero point energy (ZPE) correction and basis set superposition error (BSSE) correction. The greatest corrected intermolecular interaction energy of the dimers is $-23.69\;kJ{\cdot}mol^{-1}$. Natural bond orbital (NBO) analysis is performed to reveal the origin of the interaction. Based on the vibrational analysis, the changes of thermodynamic properties from the monomers to dimer with the temperature ranging from 200.0 K to 800.0 K have been obtained using the statistical thermodynamic method. It was found that the hydrogen bonds dominantly contribute to the dimers, while the binding energies are not only determined by hydrogen bonding. The dimerization process can not occur spontaneously at given temperatures.

X-선 회절로 얻은 수소결합의 결합거리 보정 방법: 중성자 회절결과와 결합원자가 방법 이용 (Correction Method of the Hydrogen Bond-Distance from X-ray Diffraction: Use of Neutron Data and Bond Valence Method)

    • 한국광물학회지
    • /
    • 제16권1호
    • /
    • pp.65-73
    • /
    • 2003
  • 이 연구에서는 X-선 회절법으로 측정한 수소결합의 거리를 보정하는 두 가지 방법을 제시하였다 O…O 거리가 2.5 $\AA$ 이상인 수소결합의 경우는 저온에서 측정한 중성자 회절에 의한 수소결합 데이터를 이용하여 얻은 최적화 곡선 식 d(O-H)=exp((2.173-d(O…O))/0.138)+0.958을 이용하여 수소결합 거리를 보정한다. O…O 거리가 2.5 $\AA$ 이하의 짧은 수소결합의 경우는 결합원자가 최적화 방법(valence-least-squares)을 이용하는 것이 효과적이다. X-선 회절분석으로 얻은 긴 O…O 거리를 갖는 분자간 수소결합의 경우는 수소결합의 거리보정을 해주어야 한다.

Evidences that β-Lactose Forms Hydrogen Bonds in DMSO

  • Ko, Hyun-Sook;Shim, Gyu-Chang;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권12호
    • /
    • pp.2001-2006
    • /
    • 2005
  • Glycoproteins and glycolipids play key roles in intracellular reactions between cells and their environments at the membrane surface. For better understanding of the nature of these events, it is necessary to know threedimensional structures of those carbohydrates, involved in them. Since carbohydrates contain many hydroxyl groups which can serve both as hydrogen bond donors and acceptors, hydrogen bond is an important factor stabilizing the structure of carbohydrate. DMSO is an aprotic solvent frequently used for the study of carbohydrates because it gives detailed insight into the intramolecular hydrogen bond network. In this study, conformational properties and the hydrogen bonds in $\beta$-lactose in DMSO are investigated by NMR spectroscopy and molecular dynamics simulations. NOEs, temperature coefficients, deuterium isotope effect, and molecular dynamics simulations proved that there is a strong intramolecular hydrogen bond between O3 and HO2' in $\beta$-lactose and also OH3 in $\beta$-lactose may form an intermolecular hydrogen bond with DMSO.

페놀계 모델 화합물 및 폴리벤조옥사진 수지에 대한 수소결합분포의 정량화 (Quantification for the Distribution of Hydrogen Bonding Species in Phenolic Model Compounds and Polybenzoxazines)

  • 김호동;문화연
    • 한국염색가공학회지
    • /
    • 제20권4호
    • /
    • pp.21-30
    • /
    • 2008
  • To understand the complex hydrogen bonding structure, several phenolic derivatives and benzoxazine model compounds are synthesized and characterized by Fourier transform infrared spectroscopy (FT-IR). The estimation of molar extinction coefficients for various types of hydrogen bonding species is systematically carried out by the curve-resolving of FT-IR spectra. The distribution of hydrogen bonding species in benzoxazine model dimers is quantitatively analyzed. It is revealed that benzoxazine dimers and BA-a polybenzoxazine are mainly composed of intramolecular interaction rather than intermolecular interaction.

Interaction Between Barbiturate and Membrane Components

  • Yu, Byung-Sul;Jo, Seong-Bong;Kim, Chong-Kook;Hwang, Young-Sik
    • Archives of Pharmacal Research
    • /
    • 제13권3호
    • /
    • pp.246-251
    • /
    • 1990
  • Intermolecular interaction between barbiturates and membrane components such as phospholipid and cholesterol were investigated on $^1$H-NMR spectra and infrared spectra. According to previous reports, barbiturates interacted with phospholipid through intermolecular hydrogen bonds. We also investigated thi observation using dipalmitoyl-phosphatidylcholine (DPPC) as phospholipid in deuterochloroform, and characterized quantitatively. Also, the observed drug could interact with cholesterol which is one of the major components of biomembranes through hydrogen bonds. It was the carbonyl groups of barbiturate and the hydroxyl group of cholesterol that formed hydrogen bond complex. In addition to spectroscopic studies, we investigated the direct effect of phenobarbital on lipid multibilayer vesicles, whose compositions were varied, by calorimetric method. Phenobarbital caused a reduction in the temperature of phase transition of vesicles. These studies may provided a basis for interpreting the mode of action of barbiturates.

  • PDF