• Title/Summary/Keyword: Intermittent demand

Search Result 31, Processing Time 0.027 seconds

A New Bootstrap Simulation Method for Intermittent Demand Forecasting (간헐적 수요예측을 위한 부트스트랩 시뮬레이션 방법론 개발)

  • Park, Jinsoo;Kim, Yun Bae;Lee, Ha Neul;Jung, Gisun
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.3
    • /
    • pp.19-25
    • /
    • 2014
  • Demand forecasting is the basis of management activities including marketing strategy. Especially, the demand of a part is remarkably important in supply chain management (SCM). In the fields of various industries, the part demand usually has the intermittent characteristic. The intermittent characteristic implies a phenomenon that there frequently occurs zero demands. In the intermittent demands, non-zero demands have large variance and their appearances also have stochastic nature. Accordingly, in the intermittent demand forecasting, it is inappropriate to apply the traditional time series models and/or cause-effect methods such as linear regression; they cannot describe the behaviors of intermittent demand. Markov bootstrap method was developed to forecast the intermittent demand. It assumes that first-order autocorrelation and independence of lead time demands. To release the assumption of independent lead time demands, this paper proposes a modified bootstrap method. The method produces the pseudo data having the characteristics of historical data approximately. A numerical example for real data will be provided as a case study.

A Binomial Weighted Exponential Smoothing for Intermittent Demand Forecasting (간헐적 수요예측을 위한 이항가중 지수평활 방법)

  • Ha, Chunghun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.50-58
    • /
    • 2018
  • Intermittent demand is a demand with a pattern in which zero demands occur frequently and non-zero demands occur sporadically. This type of demand mainly appears in spare parts with very low demand. Croston's method, which is an initiative intermittent demand forecasting method, estimates the average demand by separately estimating the size of non-zero demands and the interval between non-zero demands. Such smoothing type of forecasting methods can be suitable for mid-term or long-term demand forecasting because those provides the same demand forecasts during the forecasting horizon. However, the smoothing type of forecasting methods aims at short-term forecasting, so the estimated average forecast is a factor to decrease accuracy. In this paper, we propose a forecasting method to improve short-term accuracy by improving Croston's method for intermittent demand forecasting. The proposed forecasting method estimates both the non-zero demand size and the zero demands' interval separately, as in Croston's method, but the forecast at a future period adjusted by binomial weight according to occurrence probability. This serves to improve the accuracy of short-term forecasts. In this paper, we first prove the unbiasedness of the proposed method as an important attribute in forecasting. The performance of the proposed method is compared with those of five existing forecasting methods via eight evaluation criteria. The simulation results show that the proposed forecasting method is superior to other methods in terms of all evaluation criteria in short-term forecasting regardless of average size and dispersion parameter of demands. However, the larger the average demand size and dispersion are, that is, the closer to continuous demand, the less the performance gap with other forecasting methods.

A Comparative Model Study on the Intermittent Demand Forecast of Air Cargo - Focusing on Croston and Holts models - (항공화물의 간헐적 수요예측에 대한 비교 모형 연구 - Croston모형과 Holts모형을 중심으로 -)

  • Yoo, Byung-Cheol;Park, Young-Tae
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.1
    • /
    • pp.71-85
    • /
    • 2021
  • A variety of methods have been proposed through a number of studies on sophisticated demand forecasting models that can reduce logistics costs. These studies mainly determine the applicable demand forecasting model based on the pattern of demand quantity and try to judge the accuracy of the model through statistical verification. Demand patterns can be broadly divided into regularity and irregularity. A regular pattern means that the order is regular and the order quantity is constant. In this case, predicting demand mainly through regression model or time series model was used. However, this demand is called "intermittent demand" when irregular and fluctuating amount of order quantity is large, and there is a high possibility of error in demand prediction with existing regression model or time series model. For items that show intermittent demand, predicting demand is mainly done using Croston or HOLTS. In this study, we analyze the demand patterns of various items of air cargo with intermittent patterns and apply the most appropriate model to predict and verify the demand. In this process, intermittent optimal demand forecasting model of air cargo is proposed by analyzing the fit of various models of air cargo by item and region.

Demand forecasting for intermittent demand using combining forecasting method (결합 예측 기법을 이용한 간헐 수요에 대한 수요예측)

  • Kwon, Ick-Hyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.4
    • /
    • pp.161-169
    • /
    • 2016
  • In this research, we propose efficient demand forecasting scheme for intermittent demand. For this purpose, we first extensively analyze the drawbacks of the existing forecasting methods such as Croston method and Syntetos-Boylan approximation, then using these findings we propose the new demand forecasting method. Our goal is to develop forecasting method robust across many situations, not necessarily optimal for a limited number of specific situations. For this end, we adopt combining forecasting method that utilizes unbiased forecasting methods such as simple exponential smoothing and simple moving average. Various simulation results show that the proposed forecasting method performed better than the existing forecasting methods.

A Study on Intermittent Demand Forecasting of Patriot Spare Parts Using Data Mining (데이터 마이닝을 이용한 패트리어트 수리부속의 간헐적 수요 예측에 관한 연구)

  • Park, Cheonkyu;Ma, Jungmok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.234-241
    • /
    • 2021
  • By recognizing the importance of demand forecasting, the military is conducting many studies to improve the prediction accuracy for repair parts. Demand forecasting for repair parts is becoming a very important factor in budgeting and equipment availability. On the other hand, the demand for intermittent repair parts that have not constant sizes and intervals with the time series model currently used in the military is difficult to predict. This paper proposes a method to improve the prediction accuracy for intermittent repair parts of the Patriot. The authors collected intermittent repair parts data by classifying the demand types of 701 repair parts from 2013 to 2019. The temperature and operating time identified as external factors that can affect the failure were selected as input variables. The prediction accuracy was measured using both time series models and data mining models. As a result, the prediction accuracy of the data mining models was higher than that of the time series models, and the multilayer perceptron model showed the best performance.

Effect of intermittent operation modes on performance of reverse osmosis (RO) membrane in desalination and water treatment

  • Yang, Heungsik;Choi, Jihyeok;Choi, Yongjun;Lee, Sangho
    • Membrane and Water Treatment
    • /
    • v.13 no.1
    • /
    • pp.39-49
    • /
    • 2022
  • Seawater desalination is doubtlessly a viable option to supply fresh drinking water. Nevertheless, RO (reverse osmosis) desalination plants in specific areas may be intermittently operated to match the imbalance between water demand and supply. Although a handful of works have been done on other membrane systems, few studies have attempted to mitigate fouling in intermittent RO systems. Accordingly, the objectives of this paper were to examine the effect of the intermittent operation on RO fouling; and to compare four intermittent operation modes including feed solution recirculation, membrane storage in the feed solution, deionized water (DI) recirculation, and membrane storage in DI water. Results showed that intermittent operation reduced RO fouling under several conditions. However, the extents of fouling mitigation were different depending on the feed conditions, foulant types, and membrane lay-up methods. When the feed solution was recirculated during the lay-up, the restoration of the flux was less significant than that by the feed solution feed-up. The use of deionized water during the lay-up was effective to restore flux, especially when the feed solution contains scale-forming salts (CaSO4) and/or colloidal silica.

The Impact of Demand Features on the Performance of Hierarchical Forecasting : Case Study for Spare parts in the Navy (수요 특성이 계층적 수요예측법의 퍼포먼스에 미치는 영향 : 해군 수리부속 사례 연구)

  • Moon, Seong-Min
    • Korean Management Science Review
    • /
    • v.29 no.1
    • /
    • pp.101-114
    • /
    • 2012
  • The demand for naval spare parts is intermittent and erratic. This feature, referred to as non-normal demand, makes forecasting difficult. Hierarchical forecasting using an aggregated time series can be more reliable to predict non-normal demand than direct forecasting. In practice the performance of hierarchical forecasting is not always superior to direct forecasting. The relative performance of the alternative forecasting methods depends on the demand features. This paper analyses the influence of the demand features on the performance of the alternative forecasting methods that use hierarchical and direct forecasting. Among various demand features variability, kurtosis, skewness and equipment groups are shown to significantly influence on the performance of the alternative forecasting methods.

Impacts of Demand Response from Different Sectors on Generation System Well Being

  • Hassanzadeh, Muhammad Naseh;Fotuhi-Firuzabad, Mahmud;Safdarian, Amir
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1719-1728
    • /
    • 2017
  • Recent concerns about environmental conditions have triggered the growing interest in using green energy resources. These sources of energy, however, bring new challenges mainly due to their uncertainty and intermittency. In order to alleviate the concerns on the penetration of intermittent energy resources, this paper investigates impacts of realizing demand-side potentials. Among different demand-side management programs, this paper considers demand response wherein consumers change their consumption pattern in response to changing prices. The research studies demand response potentials from different load sectors on generation system well-being. Consumers' sensitivity to time-varying prices is captured via self and cross elasticity coefficients. In the calculation of well-being indices, sequential Monte Carlo simulation approach is accompanied with fuzzy logic. Finally, IEEE-RTS is used as the test bed to conduct several simulations and the associated results are thoroughly discussed.

An Empirical Study on Improving the Accuracy of Demand Forecasting Based on Multi-Machine Learning (다중 머신러닝 기법을 활용한 무기체계 수리부속 수요예측 정확도 개선에 관한 실증연구)

  • Myunghwa Kim;Yeonjun Lee;Sangwoo Park;Kunwoo Kim;Taehee Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.406-415
    • /
    • 2024
  • As the equipment of the military has become more advanced and expensive, the cost of securing spare parts is also constantly increasing along with the increase in equipment assets. In particular, forecasting demand for spare parts one of the important management tasks in the military, and the accuracy of these predictions is directly related to military operations and cost management. However, because the demand for spare parts is intermittent and irregular, it is often difficult to make accurate predictions using traditional statistical methods or a single statistical or machine learning model. In this paper, we propose a model that can increase the accuracy of demand forecasting for irregular patterns of spare parts demanding by using a combination of statistical and machine learning algorithm, and through experiments on Cheonma spare parts demanding data.

Enhancing Smart Grid Efficiency through SAC Reinforcement Learning: Renewable Energy Integration and Optimal Demand Response in the CityLearn Environment (SAC 강화 학습을 통한 스마트 그리드 효율성 향상: CityLearn 환경에서 재생 에너지 통합 및 최적 수요 반응)

  • Esanov Alibek Rustamovich;Seung Je Seong;Chang-Gyoon Lim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.93-104
    • /
    • 2024
  • Demand response is a strategy that encourages customers to adjust their consumption patterns at times of peak demand with the aim to improve the reliability of the power grid and minimize expenses. The integration of renewable energy sources into smart grids poses significant challenges due to their intermittent and unpredictable nature. Demand response strategies, coupled with reinforcement learning techniques, have emerged as promising approaches to address these challenges and optimize grid operations where traditional methods fail to meet such kind of complex requirements. This research focuses on investigating the application of reinforcement learning algorithms in demand response for renewable energy integration. The objectives include optimizing demand-side flexibility, improving renewable energy utilization, and enhancing grid stability. The results emphasize the effectiveness of demand response strategies based on reinforcement learning in enhancing grid flexibility and facilitating the integration of renewable energy.