
J Electr Eng Technol.2017; 12(5): 1719-1728 
http://doi.org/10.5370/JEET.2017.12.5.1719 

 1719
Copyright ⓒ The Korean Institute of Electrical Engineers 

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ 
licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Impacts of Demand Response from Different Sectors on Generation 
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Abstract – Recent concerns about environmental conditions have triggered the growing interest in 
using green energy resources. These sources of energy, however, bring new challenges mainly due to 
their uncertainty and intermittency. In order to alleviate the concerns on the penetration of intermittent 
energy resources, this paper investigates impacts of realizing demand-side potentials. Among different 
demand-side management programs, this paper considers demand response wherein consumers change 
their consumption pattern in response to changing prices. The research studies demand response 
potentials from different load sectors on generation system well-being. Consumers’ sensitivity to time-
varying prices is captured via self and cross elasticity coefficients. In the calculation of well-being 
indices, sequential Monte Carlo simulation approach is accompanied with fuzzy logic. Finally, IEEE-
RTS is used as the test bed to conduct several simulations and the associated results are thoroughly 
discussed. 
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Nomenclature 
 

,k tD   Demand of load sector k at hour t (MWh). 
,k t   Price of load sector k at hour t ($/MWh). 
,k tA   Incentive of program in the t hour $/MWh). 
,k t

o   Initial price of load sector k in the t hour  
($/MWh). 

,k t
oD   Initial demand of Load sector K in the t hour 

(MW). 
( , )ik jkE  Cross elasticity coefficients.  
( , )ik ikE  Self-elasticity coefficients. 

,( )k tB D  Customers income of load sector K in the t hour 
($). 

,k t
oB   Benefit of load sector K in t hour with nominal 

demand  
k
o   Mean price for load sector K in 24 hours  

upj  Capacity of the jth in service unit in contingency ci 
icp   Capacity of available units in the ith contingency ci 
1iw   First modifications factors associated with ith hour 

iCLUS  Capacity of largest units in ith hour  
Load System load at the given hour 

1im   Set of in service units in ith hour which their single 
outage will not result in load interruption 

 P H  Healthy state probabilities  

 P M   Marginal state probabilities  
 P R   Risk state probabilities 
 
 

1. Introduction 
 
Demand response is neither a new tool nor a complicated 

concept. It is referred to changes in consumers’ usage 
profile in response to time-varying prices and/or signals 
indicating technical and financial condition in power 
industry. Although it has been known that flexibility in 
demand can bring several benefits, its realization has been 
postponed mainly because of technical barriers. These days, 
however, thanks to recent advances in communication 
systems and the smart grid paradigm, demand response 
has become very close to the realization phase. Demand 
response realization is counted as big step towards optimal 
electricity use and efficient power systems. There are 
different methods for activating demand response, which 
are used depending on the facilities and conditions. 
Various initiatives have been taken in the past two decades 
concerning demand response. References [1-3] discussed 
the application of different demand response and load 
modeling methods under different conditions. In [1], a 
study is carried out on demand response of intelligent 
systems based on the maximization of customer benefits 
or minimization of electricity costs using real time pricing. 
In [2], customers’ response to real time prices was studied 
by maximizing customers’ well-being. In [3], a study was 
carried out on the optimization of demand response using 
time of use (TOU) pricing method. A demand response 
model was also developed based on the average cost and 
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consumption as well as time-dependent price differences. 
In [4], a practical pricing scheme was proposed to 
encourage different costumers to participate in demand 
response programs. Different studies were also carried 
out on the effect of application of demand response on both 
supply and demand sides. These studies covered a wide 
range of applications of the demand response. References 
[5, 6] discussed the economic planning issues considering 
the availability of demand response and examined its 
effect on power systems planning. [7], investigated the 
effect of demand response on the reliability of power 
systems considering load uncertainty. In that study, demand 
response was studied as load shift. [8], investigated the 
effect of demand response on different load sectors using 
the load shift method. It also studied the effects of load 
shift in different load sectors on system reliability at the 
production level. [9] and [10] examined the advantages of 
demand response in the agricultural and industrial sectors. 
They found out that the profitability of demand response 
varies in different sectors depending on the behavior and 
nature of loads in different sectors. In [11], industrial 
demand response modelling in smart grid was studied. It 
has been shown that demand response modeling has 
become a major technology to improve the reliability of 
system with reducing costumers costs. Although numerous 
studies have been carried out on demand response, majority 
of them have examined the partial effect of implementation 
of demand response programs on aggregate system load 
without considering the response from different sectors. 
In this paper, demand response potential from different 
load sectors is studies. 

The use of demand response is anticipated to improve 
service reliability, prevent network congestion, mitigate 
environmental effects, improve system security, reduce 
network losses, and enable higher penetrations of intermittent 
energy resources [12-14]. In [15], a study was carried out 
on the impacts of demand response programs on reliability 
of wind integrated power systems considering demand-
side uncertainties. They found out that demand response 
programs improve the reliability level and peak load carrying 
capability of new energy integrated systems. 

Among the benefits, enabling higher penetrations of 
intermittent energy resources has attracted the attention 
of several researchers. This is mainly due to numerous 
advantages of using renewable energy resources. In this 
paper, demand response potentials in generation system 
well-being are evaluated. In the research, impacts of 
seven load sectors namely residential, agriculture, office, 
industrial, large user, government and commercial loads 
are studied. Another parameter that is taken into account 
in the implementation of demand response is demand 
sensitivity to the price of electricity. In the restructured 
electricity system, due to the economic issues and the 
electricity market, the price of electricity may change 
overtime and customers may be influenced by price 
variations. As a result, customers alter their energy use 

profile that can influence the status of the system [16]. 
Therefore, analysis of the effect of elasticity on the demand 
response is another parameter considered in this research. 
Various initiatives have also been taken concerning load 
elasticity in the demand response program. In [17], the 
authors investigated the effect of economic elasticity of 
load on the electricity market. In [18], load elasticity and 
its effect on load profile were calculated. In [19] and [20], 
load elasticity in the electricity market was modeled and 
simulated. The reported research indicated that load 
elasticity varies depending on the load sector. Moreover, 
some loads are flexible to prices while others are not. 
Demand response specifically influences the elasticity of 
load segments to reliability criteria within the framework 
of well-being. Different scenarios were used to study the 
use of demand response with and without encouragement 
and its effect on the system criteria. To this end, the 
sequential Monte Carlo method and fuzzy logic were 
used. The IEEE-RTS reliability test system is also used 
for assessment purposes.  

 
 

2. Preliminary Basics 
 
This section intends to briefly describe the major 

theoretical concepts applied in the developed model. In 
below, brief explanations over the considered model for 
demand response measures and well-being analysis are 
provided. 

 
2.1 Demand response 

 
Load elasticity is defined as the demand sensitivity to 

the price changes. It should be mentioned that elasticity 
coefficients are usually divided into two groups namely 
self-elasticity coefficients and cross elasticity coefficients. 
The former coefficients denote demand changes in 
response to electricity price variations at the same hour 
while the later coefficients represent demand response to 
price changes at different hours. [20]. In this section, we 
model how dynamic pricing and price elasticity affect the 
demand profile in different sectors and we show how the 
maximum benefit of customers can be achieved due to this 
response. 

 
Modeling based on self-elasticity: 
If load sector K changes its demand from ,k t

oD to ,k tD in 
response to incentive ,k tA , we have  

 
 , , ,k t k t k t

oD D D     (1) 
 
So, incentive price for load sector k and the t-th hour 

will be as follow: 
 
 , , ,( ) . ( )k t k t k tP D A D     (2) 
 
Benefit of load sector K, ,( )k tS D , for the t-th hour will 
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be as: 
 

 , , , , ,( ) ( ) . ( )k t k t k t k t k tS D B D D P D      (3) 

 

To maximize the load sectors K benefit, 
,

,

( )k t

k t

S D

D




 

should be set to zero: i.e. 
 

 
, , ,

,
, , ,

( ) ( ) ( )
0

( ) ( ) ( )

k t k t k t
k t

k t k t k t

S D B D P D

D D D
  

   
  

  (4) 

 
where  

 

 
,

, ,
,

( )

( )

k t
k t k t

k t

B D
A

D


 


  (5) 

 
The benefit function for load sector K in i-th hour is [19]. 
 

, ,
, , , ,

, ,
( ) 1

2. .

k t k t
k t k t k k t k t o

o o o ik ik k t
o

D D
B D B D D

E D


            
 (6) 

 
Where k

o  is mean price for load sector K in 24 hours 
and is determined as follow: 

 

 

24 , ,

1
24 ,

1

k t k t
o ok i

o
k t
oi

D P

D
 








  (7) 

 
Considering (5) and (6) together we can have 
 

 
, ,

, , ,
, ,

1
.

k t k t
k t k t k t o

o k t k t
o

D D
A

E D
 

 
    

  
  (8) 

 
, ,

, , ,
, ,.

k t k t
k t k k t k t o

o o k t k t
o

D D
A

E D
  

 
     

  
  (9) 

 
Therefore, load sector K consumption will be: 
 

 

, , , ,
, ,

,

.
1

k t k t k t k t
ok t k t

o k t
o

E A
D D

 



       
 
 

  (10) 

 
Where ,  k tD is demand of load sector k at hour t (MWh) 

and ,k t  is price of load sector k at hour t ($/MWh) and 
,k tA  is incentive of program at hour t ($/MWh) and ,k t

o .  
is initial price of load sector k at hour t ($/MWh) and ,k t

oD  

initial demand of load sector k at hour t (MW). Likewise, 
 ,ik ikE and  ,  ik jkE are self and cross elasticity coefficients 

respectively and ,( )?k tB D is customers income of load 

sector k at hour t ($) and ,
0
k tB  is benefit of load sector k at 

hour t with nominal demand and 0
k  is mean price for load 

sector k within the 24 hours. 
 
Modeling based on cross elasticity: 
The cross elasticity for load sectors K between i-th hour 

and j-th hour is given by: 
 

 
, ,

, 0
, ,

k jt k it
ik jk

k it k jt
o

D
E

D





 


  (11) 

 
If a constant cross elasticity for load sector K is assumed, 

the demand response to price variation could be defined as 
a linear function as follow: 

 
24 ,

, , , , ,
,

1

. .
k it

k it k it ik jk k jt k jto
o ok jt

oj

D
D D E  



     ; i=1:24 (12) 

 
If incentive in j-th hour for load sector K is ,k jtA  

which can be positive in peak load hours and zero in others, 
energy price will be given by 

 

 , , , ,k jt k jt k jt k jt
o A        (13) 

 
Therefore 
 

 
24 ,

, , , , , ,
,

1

. .
k it

k it k it ik jk k jt k jt k jto
o ok jt

oj

D
D D E A 



       (14) 

 
Combining (10) and (14), we can have final model as 

follow: 
 

 
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, , , ,

,
1

ik ik k t k t k t
o

k t
o

E A 



      
 
 

  (15) 

2.2 Well-being analysis 
 
The well-being analysis is to evaluate the well-being of 

system in serving load via a set of probabilistic criteria. As 
displayed in Fig. 1. The degree of system well-being is 
quantified in terms of three indices namely healthy, 
marginal, and risk. The system is in the health state if there 
is additional reserve in available generation capacity to 
meet analytical criteria like loss of the largest available unit. 
In the marginal state, the system does not face problems in 
serving the load, but it lacks sufficient reserve to face 

 

Fig. 1. Well-being model 
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analytical criteria. Synonymously, in the marginal state, the 
generation capacity reserve is not enough to tolerate against 
the loss of the largest operating generating unit. In the 
risk state, the load is higher than the available generation 
capacity. Clearly, the system is always in either health state, 
marginal state, or risk state. The probabilities of the system 
being in any of the three states are considered as well-
being indices. 

There are analytical and simulation methods to estimate 
the well-being indices. Without loss of generality, this 
paper uses the sequential Monte Carlo simulation method 
for estimating the well-being indices. The method randomly 
samples the up/down state of generating units and calculates 
total available capacity of the generation system. Fig. 2 
shows available generation capacity versus time for a 
typical generation system. This curve is known as cap-in 
curve. The capacity of the largest available unit is then 
subtracted from the cap-in curve to achieve cap-in-CLUS 
curve. Finally, comparing the two curves with the system 
load curve indicates if the system is in health, marginal, 
or risk state within each time interval. In the figure 2, t(H), 
t(M), and t(R ) represent the time during which the system 
is in health, marginal, and risk states, respectively. The 
probability of the system being in each of the states is 
finally calculated by summing up the associated duration 
times divided by the duration of simulation period. 

 
 

3. Developed Methodology 
 
This section develops a step-by-step procedure to include 

demand response impacts in generation system well-
being assessment. The step-by-step process is described as 
follows: 

Step 1: This step is to identify the system under study 
and prepare the required input data. The potential input 
data are load data associated with different load sectors, 
conventional generating units’ data, and intermittent energy 
resources’ data. 

Step 2: In this step, sequential Monte Carlo simulation 
approach is used to determine up/down state of con-
ventional generating units. The output of this step includes 
hourly available generation capacity during the simulation 
period. 

Step 3: The data associated with the energy use of 
different load sectors, i.e., residential, commercial, etc., is 
employed to calculate hourly load of the system. At the end 
of this step, hourly total load profile of the system is 
achieved. 

Step 4: In this step, in order to study the effect of 
demand response on the indices of the system well-being, 
load elasticity and time of use pricing are used.  

The reaction of consumers in response to time-varying 
prices, i.e., hourly prices, is captured via price elasticity 
coefficients [17]. It should be mentioned that elasticity 
coefficients are usually divided into two groups namely 
self-elasticity coefficients and cross-elasticity coefficients. 
The former coefficients denote demand changes in response 
to electricity price variations at the same hour while the 
later coefficients represent demand response to price 
changes at different hours. It is worth mentioning that self-
elasticity coefficients are always negative while cross-
elasticity coefficients take positive values. At the end of 
this step, revised load profile associated with different load 
sectors and total load profile of the system after applying 
demand response are ready to be used in the next steps. 

Step 5: In the above steps, hourly system load profile 
and hourly generation capacity are achieved. Hourly 
capacity of the largest available generating unit is the other 
information needed to start system well-being analysis. To 
this end, this step checks the up/down state of generating 
units during the simulation period and selects the capacity 
of the largest operating generating unit as the output. 

Step 6: This step is to calculate well-being indices of 
the system based on the obtained hourly load, available 
generation capacity, and capacity of the biggest operating 
unit profiles. The well-being analysis is an iterative process 
as follows: 

Step 6-1: The first time interval of the simulation period 
is selected. The available capacity of the generation system 
is compared with the system load during the selected 
time interval. If the load is more than the available 
capacity, system is assumed to be in the risk state within 
the selected time interval. Otherwise, if load is less than 
available capacity minus the capacity of the largest available 
unit, system is in the health state. Finally, if neither of the 
conditions is encountered, system is in the marginal state. 

Step 6-2: The well-being indices are calculated by 
dividing the number of time intervals belong to each state 
by the total number of selected and analyzed time intervals. 

Step 6-3: The termination criteria are checked in this 
step. Convergence of the indices, total number of selected 
and evaluated time intervals, and CPU time are the major 
termination criteria utilized in the literature. In case either 
of considered termination criteria is encountered, the study 
is done and calculated indices are reported. Otherwise, the 
well-being analysis proceeds to the next step. The stopping 
criterion is as follow: 

 

Fig. 2. Combined generating capacity and load 
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 

 
0.05

x

E x N





  (16) 

 
where x is the P(H), N is the number of sampling years, 
E (x ) is the mean value function, and σ (x) is the standard 
deviation function. 

Step 6-4: In this step, the next time interval is selected 
and system state during the selected time interval is 
determined. The iterative procedure proceeds from Step 
6-2. 

 
The well-being indices that will be calculated by the 

above process are imposed to essential defects since 
system state is determined according to crisp criteria. In 
such a situation, even minor fluctuations in system load 
may trigger big changes in the well-being indices. This is 
more obvious especially when the largest collaborative unit 
is substantially bigger than other units. This issue can be 
solved by means of Fuzzy logic approach. In this approach, 
a specific membership function is used to determine to 
what extent the selected time interval belongs to the health 
and marginal states, and it is divided between the health 
and marginal states based on the membership function. For 
instance, consider a time interval during which the system 
does not have enough reserve to cope with the outage of 
the largest available unit. However, the system can tolerate 
the loss of smaller collaborative units, the system is 
assumed to be partly in the health and marginal states 
during the time interval. To determine the share of each 
system state, two correction parameters, introduced in 
[24], have been used. The first parameter represents the 
proportion of the number of available units whose failure 
does not lead to loss of load to the total number of the 
sharing units at that hour. The share of the health state 
increases as this parameter increases. The second parameter 
is the proportion of the value of load lost at each hour due 
to loss of the largest sharing unit at that hour to the size of 
the largest sharing unit at that hour. The share of health 
state increases as this parameter decreases. The above 
described procedure calculates generation system well-
being indices considering demand response from different 
load sectors. The indices are also in the Fuzzy form which 
more effectively demonstrates system condition from the 
well-being viewpoint. In fact, this parameter demonstrates 
the effect of the largest available unit at each hour in load 
provision. To understand this better, consider a system with 
N generating units. Let available capacity value at hour i 
be icp . Assuming imc  units out of N to be available and 

 units to fail, the state at this hour can be represented as 
follows. 

Where upj is capacity of the jth in service unit in 
contingency ci and  icp is the available generation 

capacity within the ith contingency ci and wi1 is the first 
modifications factors associated with the ith hour and 2iw  

is the second modifications factors associated with the ith 

hour and iCLUS is capacity of the largest unit in the ith 

hour and Load system load at the given hour. Likewise, 

1im  is the set of in service units in the ith hour whose 

single outage will not result in load interruption and P(H), 
P (M) and P (R) are probability of healthy, marginal and 
risk states. 

 
 1 2 mciup up up      (17) 

 
1

imc

i ij
j

cp up


   (18) 

 i imc nc N    (19) 
 
If ,icp Load  the ith hour belongs to the risk domain. 

If  icp Load , the ith hour belongs to the comfort domain; 
i,e. healthy or marginal state. Modification factors in the ith 

hour are as follow: 
 

 1
1

i
i

i

m
w

mc
   (20)  

 2
( )

1 ( )i i
i

i

Load cp CLUS
w

CLUS

 
    (21)  

 
Healthy and marginal state probabilities are calculated as 

follow: 
 

      1P M P H P R     (22)  
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i i
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j w w
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


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


   (24)  

 
 

4. Test System Data 
 
The original IEEE-RTS system with total installed 

capacity of 3,405 MW, 32 generators, single-state load 
model, and peak load of 2,850 MW, which is the sum of 
peak loads on all the buses, has been proposed in the 
initial plan [22]. The IEEE-RTS basic load model has 
been presented specifying load composition at each bus 
including the seven load sectors: residential, agricultural, 
official, industrial, residential, governmental, and 
commercial loads [23]. The system load has been presented 
in 8736 points in an hourly basis. The peak load in each 
sector is shown in Table 1 together with the related load 
factors. According to the research results, peak load and the 
factor vary for different sectors. This reflects effects of 
different response potentials from different sectors. Fig. 3 
shows the load diagram for different sectors. In addition, 
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peak load hours and profile vary in different sectors. Each 
sector demonstrates a different behavior in terms of 
demand response. Load profile, which is the sum of that of 
all sectors, is depicted in Fig. 4. Results of the comparison 
of the above figures suggest that each sector has its own 
specific profile and its variations do not comply with the 
variation of aggregate system load.  

 
 

5. Case Study 
 
In order to study the effect of demand response on the 

indices of the system well-being using load elasticity and 
time of use pricing, the following scenarios are taken into 
account: 

Scenario 1: In this scenario, the criteria of the system in 
question are calculated with and without the application of 

fuzzy method to demonstrate the efficiency of the fuzzy 
method in system well-being criterion. In this scenario, 
the calculations are made without considering demand 
response. The probability of health, marginal, and risk 
states is calculated and mentioned in Table 2. As displayed 
in the table, the health state probability value is increased 
from 0.951884 with the conventional calculation method 
to 0.979286 with the modified fuzzy based method. The 
marginal state probability is decreased. The risk state 
values, or LOLP, and the energy not served (ENS) values 
are the same in the two calculation methods. The annual 
amounts of served energy in the three health, marginal, and 
risk states can offer a better view of the used load serving 
quality. The total annual used energy value of the system is 
15,375,179.76 MWh in the conventional calculation 
method while, 14,341,152.04 MWh of it is in the health 
state, 936,157.43 MWh in the marginal state, 97,870.29 
MWh in the risk state, and 4,949.32 MWh is not served. 
In the method of calculation with the application of fuzzy 
method, the served energy value in the health state is 
increased by 578,613.98 MWh and reached 14,919,766.02 
MWh. The served energy in the marginal state is decreased 
by the same amount. These values are displayed in Table 3. 
which can affect the calculation of the amount of reserve 
needed in the system and also make the amount of 
investment lower. 

Scenario 2: In this scenario, demand response is 
considered based on self and cross elasticity coefficients of 
different load sectors. The values of the coefficients of 
different load sectors are given in Table 4. As displayed, 
loads are generally divided into the four groups of residential 
loads, large user and industrial loads, commercial, official, 
and public loads, and agricultural loads. Because official 
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Fig. 3. Different load sectors profile 
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Fig. 4. IEEE-RTS system load profile 
 

Table 1. Different load sectors Peak load and load factor 
IEEE-RTS 

Sector Load Factor (%) Peak (MW) 
Agricultures 38.38 113.1 
Large User 63.44 855.01 
Residential 57.48 968.99 
Government 56.26 145.35 

Industrial 83.42 399.01 
Commercial 54.41 284.99 

Office 61.73 57.02 
System 63.80 2754.75 

 

Table 2. Well-being indices with and without fuzzy logic 

 E(Loss)(MWh) P(R) P(M) P(H) 
Normal 4949.32 0.004412 0.043704 0.951884

Modified 4949.32 0.004412 0.016302 0.979286

 
Table 3. Served energy with and without fuzzy logic 

 E(Total) 
(MWH) 

E(R) 
(MWH) 

E(Margin) 
(MWH) 

E(healthy) 
(MWH) 

Normal 15375179.76 97870.29 936157.46 14341152.04
Modified 15375179.76 97870.29 357543.45 14919766.02

 
Table 4. Elasticity of different load sectors 

Low 
Load

Off 
Load

Peak 
Load 

Low  
Load 

Off 
Load

Peak 
Load 

 

Large user, Industrial Residential  
0.0390.054-0.13 0.048 0.065-0.26 Peak Load
0.032-0.130.054 0.04 -0.260.065 Off Load 
-0.130.0320.039 -0.26 0.04 0.048Low Load

Agriculture 
Commercial, Official,  

Governmental 
 

0.0360.048-0.15 0.015 0.020-0.21 Peak Load
0.03 -0.150.048 0.012 -0.210.020 Off Load 
-0.150.03 0.036 -0.21 0.0120.015Low Load
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and public load elasticity is not available, commercial load 
elasticity is used instead. Generally, measuring elasticity is 
a complex issue and estimating the elasticity coefficients is 
associated with many uncertainties. Cultural, economic, 
and political issues, climatic conditions, security and so 
on may affect elasticity coefficients. So far, lots of efforts 
have been made to estimate elasticity coefficients. Since 
estimating the coefficients is out of scope of this paper, we 
borrowed the coefficient values from relevant references. It 
should be considered that the elasticity coefficients are 
not estimated for individual consumers. Also, it should be 
noted that the coefficients represent the average behavior 
of consumers in the same sector. After demand response 
and the application of the fuzzy based method, the system 
well-being criteria are displayed in Table 5. As displayed, 
the reliability criteria are improved, but the improvement 
is different in different load sector responses. Residential 
loads due to the highest improvement where health state 
probability is increased from 0.979286 to 0.994786, and 
risk probability is decreased from 0.004412 to 0.0007938, 
that is, by about 82%. The unserved energy value is 
decreased from 4949 MWh to 738 MWh, that is, by 85%. 
After residential loads, large, commercial, and industrial 
loads have the highest effect, respectively, and official and 
agricultural loads have the lowest effect, respectively. With 
demand response from official sector, risk state probability 
is decreased by only 9%, and unserved energy value by 
about 10%, insignificant values as compared to those for 
residential and large user loads. The served energy value in 
all the three healthy, marginal, and risk states as well as the 
total annual value of energy used by the system are 
provided in Table 6. As observed, the total energy value is 
decreased by about 9.88% with residential demand 
response, and is decreased by 5.9% with large user demand 

response, and the lowest decrease concerns agricultural 
loads with 0.45%. In Fig. 5, the used energy decrease value 
and unserved energy decrease value are displayed in percent 
for the seven different load sectors. As observed, residential, 
large user, commercial, industrial, public, agricultural, and 
official loads, respectively, have the highest effects on 
improvement of system reliability. Figs. 6 to 8 display how 
different load sector responses affect the total load profile 
as compared to the system normal load without response. 
The figures well represent the values of the effects of 

 

Fig. 5. Served and unserved energy reduction in scenario 2
 

Table 5.Well-being indices with fuzzy logic in scenario 2 

 P(Healthy) P(Margin) P(Risk) E(Loss)(MWh)
Res-Elast 0.994786 0.00442 0.0007938 738.26 
La-Elast 0.99003 0.008142 0.001828 1889.15 
In-Elast 0.985227 0.011820 0.002953 3169.54 

Com-Elast 0.98625 0.011066 0.002684 2856.87 
Gov-Elast 0.982862 0.013648 0.0034898 3801.29 
Off-Elast 0.980851 0.015141 0.004008 4443.72 
Agr-Elast 0.981149 0.014915 0.0039361 4364.43 
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Fig. 6. Large and residential load sectors response in 
scenario II 
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Fig. 7. Governmental, agriculture and official Load Sectors 
response in scenario II 
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Fig. 8. Industrial and commercial load sectors response in 
scenario II 

 
Table 6. Served energy(MWh) of three states in scenario II

 E(Healthy) E(Margin) E(Risk) E(total) 
Res-Elast 13751387.56 88808.84 16069.13 13856265.53
La-Elast 14469339.57 171245.94 38944.46 14679529.97
In-Elast 14703677.28 254169.20 64288.45 14951655.21
Com-last 14722865.19 236639.61 58054.93 15017559.73
Go-Elast 14819952.29 295394.91 76405.9 15191753.11
Off-Elast 14870105.03 330319.82 88430.41 15288855.26
Agr-Elast 14893303.1 325185.71 86812.78 15305301.6 



Impacts of Demand Response from Different Sectors on Generation System Well Being 

 1726 │ J Electr Eng Technol.2017; 12(5): 1719-1728 

different load sectors, and confirm the above items. 
Sensitivity analysis: in this section, load responses in 

different load sectors have been examined through changing 
their self and cross elasticity. Self and cross elasticity values 
have been considered to be, positively and negatively, 50% 
as compared to those in the second scenario. The results 
appear in Tables 7 to 8. Fig. 9 displays the total system 
load profile with residential load sector response at three 
different levels of elasticity as compared to the total system 
normal load profile. Fig. 10 displays the health probability 
of the system for different load sectors with three different 
elasticity levels. As observed, residential and gross loads 
are the most sensitive to changes in elasticity. Unlike in the 
second scenario, industrial loads have higher health state 
probability than commercial loads at the third level of 
elasticity and lower health probability at the first level of 
elasticity, which demonstrates the higher sensitivity of this 
type of loads than that of commercial loads. Official loads 
are the least sensitive, and agricultural and public loads 
rank next. Fig. 11 displays unserved energy values for 
different load sectors relative to changes in load elasticity. 
As observed, residential, gross, and industrial loads have 
the highest changes, and official, public, and agricultural 
loads contain the lowest changes. 

Scenario 3: In this scenario, the entire load is examined 
with the same elasticity. Load elasticity is considered as 
equal, and divided into five levels whose results are 
displayed in Table 9. The simulations are performed using 
the entire load elasticity with the same self and cross 
elasticity coefficients at the five levels as well as applying 
5 and 10$ encouragement per MWh at peak load, and the 
results are displayed below in Tables 10. and 11. As 
observed, the load elasticity value in the total system 
load, even at a low amount, improves reliability to a great 
extent. At level one with self-elasticity of 0.05 and low 
cross elasticity, the health probability value is improved 
from 0.951884 to 0.991506 and risk probability, i.e., LOLP, 
is improved by about 67% since the value is decreased 
from 0.004412 to 0.001447. It should be noted that the 
improvement is significant since 39 hours of electricity 
service interruption within a year is reduced to about 13 
hours when the proposed method is applied. Furthermore, 
the unserved energy value with level 1 elasticity is 
decreased from 4949.32 to 1465.28, displaying a decrease 
by 70 percent. Unserved energy is decreased by 1,128.22 
MWh with 5$ per MWh encouragement and by 865.62 
MWh with 10$ per MWh encouragement. Health state 
probability values are displayed in Fig. 12. for the three 
different states. As observed, the value of encouragement 
can be more effective for loads with low elasticity.  

Table 7. Well-being indices with -50% of elasticity in 
scenario 3 

 E(Healthy) E(Margin) E(Risk) E(Total) 
Res-Elast 14698941.07 266613.19 67358.0 15032912.33
La-Elast 14801660.5 286989.24 74785.4 15163435.24
In-Elast 14837626.8 322619.29 86113.7 15246359.87

Com-Elast 14765288.6 256390.42 64460.4 15086139.53
Go-Elast 14840224.5 306453.75 80185.3 15226863.58
Off-Elast 14879727.6 335235.57 90349.0 15305312.25
Agr-Elast 14911495.9 346408.14 94259.5 15352163.61

 
Table 8. Well-being indices with +50% of elasticity in 

scenario 3 

 P(Healthy) P(Margin) P(Risk) E(Loss)(MWh)
Res-Elast 0.998614 0.001225 0.000161 128.6 
La-Elast 0.994346 0.004732 0.000922 904.27 
In-Elast 0.988559 0.009271 0.00217 2259.42 

Com-Elast 0.987318 0.010249 0.002433 2561.81 
Go-Elast 0.983479 0.013178 0.003343 3610.64 
Off-Elast 0.981137 0.014928 0.003935 4352.15 
Agr-Elast 0.982332 0.014026 0.003642 3999.32 
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Fig. 9. Residential load Sector response in scenario 3 

 
Table 9. Elasticity in scenario 3 

Low load Off peak Peak load  

Level5Level1Level5 Level1 Level5Level1
Elast. 
Level

0.0300.006 0.040 0.008 -0.25 -0.05 
Peak 
Load

0.0250.005 -0.25 -0.05 0.0420.008
Off 

Peak 

-0.25 -0.05 0.025 0.005 0.0300.006
Low 
Load

 
Table 10. Well-being indices with fuzzy logic in scenario 3

 P(Healthy) P(Margin) P(Risk) E(Loss) 
Elast1 0.991506 0.007047 0.0014470 1465.28 
Elast2 0.997036 0.0025508 0.0004132 365.25 
Elast3 0.9991658 0.0007339 0.0001004 77.13 
Elast4 0.999821 0.0001597 0.00001920 13.29 
Elast5 0.999972 0.0000254 0.0000026 1.52 

 
Table 11. Well-being indices with fuzzy logic in scenario 3

 P(Healthy) P(Margin) P(Risk) E(Loss)(MWh)
Elast1A5 0.99301 0.005846 0.001144 1128.22 
Elast2A5 0.998156 0.001615 0.000229 202.01 
Elast3A5 0.999658 0.0003057 0.0000363 27.63 
Elast4A5 0.999959 0.00003712 0.00000388 2.39 
Elast5A5 0.999997 0.0000027 0.00000028 0.17 

Elast1A10 0.994284 0.0048200 0.00022900 865.62 
Elast2A10 0.998896 0.0009693 0.0001347 108.12 
Elast3A10 0.999875 0.000112 0.000013 8.85 
Elast4A10 0.999992 0.0000073 0.0000007 0.42 
Elast5A10 0.9999998 0.00000022 ~0 ~0 
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6. Conclusion 
 
Demand side management is one of the important factors 

that can have significant impacts on system reliability. 
Demand response in different load sectors due to difference 
sensitiveness to price change can have a different effect on 
reliability indices. Therefore partnership of these sectors in 
demand side management is different and it is necessary to 
consider in power system reliability calculation.  

This paper by applying demand side management based 
on load sectors elasticity and maximum benefit of customers 
to the IEEE-RTS illustrates load response in residential, 
large users, commercial and industrial loads, respectively, 
have the highest effects on reliability improvement criteria 
such as healthy, marginal and risk probability and reduction 
of expenses related to ENS. Agricultural, official, and 
governmental loads have had almost no effects, and 
application of demand response is not recommended in 
these groups. Application of the fuzzy method increases 

health state probability value and served energy in this 
state as compared to deterministic methods, and provides 
a better vision of the system’s well-being conditions for 
better operation. 

The results show to make use of demand side response, 
each sector had better be examined separately. It is better 
system decision-making and planning is performed based 
on different loads’ behavior in different sectors. Use of 
demand response is more reasonable and economical in 
some sectors, and recognition of their behavior can provide 
the system designer and operator with a better vision. For 
instance, in intelligent networks, instead of using a wide 
range of equipment for measurement and data exchange 
with a very high number of residential customers, the 
same results can be obtained by lower arrangements and 
expenses in other sectors such as the large user loads sector 
considering the low number of customers.  

With full recognition of different sectors’ behavior, 
demand response can apply to a mixture of loads, like large 
users, industrial, and commercial loads, with greater effects. 
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