• Title/Summary/Keyword: Intermittency

Search Result 59, Processing Time 0.022 seconds

Intermittency of helicity in isotropic turbulence (등방성 난류의 헬리스티의 간헐성)

  • Choi, Yeon-Taek;Lee, Chang-Hoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.441-444
    • /
    • 2006
  • Helicity in isotropic turbulence was well known to have intermittent fashion in their statistics. But its exact explanation about the onset of intermittency of helicity in turbulence did not give clearly yet. Most probable causes comes from the vortical motion of the fluids. Distribution of the angle between fluid velocity and vorticity have alignment tendency. This may be a clue to investigate intermittency of helicity. In this study, we aim to review and establish approaches to reveal the mechanism and the origin of intermittency of helicity in the isotropic turbulence. To do those work, we look for some quantities like helicity, enstrophy, acceleration and its flatness. And also correlations among them are sought.

  • PDF

Experimental Study on Measuring the Intermittency in the Transitional Boundary Layer (천이경계층에서의 간헐도 측정에 관한 실험적 연구)

  • 임효재;안재용;백성구;정명균
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.1
    • /
    • pp.9-18
    • /
    • 2003
  • An experimental study was performed to investigate the turbulence intermittency measuring methods across the boundary layer in the transition region. A single type hot-wire probe was used to measure instantaneous streamwise velocities in laminar, transitional and turbulent boundary layer To estimate wall shear stresses on the flat plate, near wall mean velocities are applied to the principle of CPM. Distribution of intermittency factor is obtained by dual-slope method and compared to the results of four methods,$\'{u},\;\{U}$, TERA and M-TERA method. In these methods, M-TERA shows a good agreement in the near wall region. However, the result of M-TERA method shows that intermittency factor is underestimated in the outer part and outside of the boundary layer and the dimensional constant of M-TERA method should be changed appropriately depending on measuring point.

Prediction of Bypass Transition Flow on Surface with Changing Pressure Gradient (압력구배가 변하는 표면 위의 Bypass 천이 유동의 예측)

  • Baek-Seong-Gu;Chung, Myung-Kyoon;Lim, Hyo-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.823-832
    • /
    • 2002
  • A modified $textsc{k}$-$\varepsilon$model is proposed for calculation of transitional boundary-layer flows with changing pressure gradient. In order to develop the model for this problem, the flow is divided into three regions; pre-transition region, transition region and fully turbulent region. The effect of pressure gradient is taken into account in stream-wise intermittency factor, which bridges the eddy-viscosity models in the pre-transition region and the fully turbulent region. From intermittency data in various flows, Narashima's intermittency function, F(${\gamma}$), has been found to be proportional to $\chi$$^{n}$ according to the extent of pressure gradient. Three empirical correlations of intermittency factor being analyzed, the best one was chosen to calculate three benchmark cases of bypass transition flows with different free-stream turbulence intensity under arbitrary pressure gradient. It was found that the variations of skin friction and shape factor as well as the profiles of mean velocity in the transition region were very satisfactorily predicted.

On the Effect of Presumed PDF and Intermittency on the Numerical Simulation of a Diffusion Flame

  • Riechelmann, Dirk;Fujimori, Toshiro
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.23-28
    • /
    • 2001
  • In the present work, the effect of PDF selection and intermittency on the result of the numerical simulation are examined by the simulation of a turbulent methane-air jet diffusion flame. As to the PDFs, beta-function and clipped Gaussian are considered. Results for the pure mixing jet are compared with experimental results. Then, the turbulent flame is calculated for the same conditions and the results obtained for the several models are compared. It is found that the clipped Gaussian distribution coupled with consideration of intermittency recovers the experimental data very well. As to the reacting flow results, the main overall properties of the turbulent jet diffusion flame such as maximum flame temperature are less affected by the choice of the PDF. Flame height and NO emissions, on the contrary, appear to be significantly influenced.

  • PDF

Development of νt-κ-γ Turbulence Model for Computation of Turbulent Flows (난류유동 해석을 위한 νt-κ-γ 모델의 개발)

  • Choi, Won-Chul;Seo, Young-Min;Choi, Sang-Kyu;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.1014-1021
    • /
    • 2009
  • A new eddy viscosity equation was formulated from assumption of turbulence length scale equation and specific dissipation ratio equation. Then, a set of turbulence model equations for the turbulent kinetic energy ${\kappa}$, the viscosity ${\nu}_t$, and the intermittency factor ${\gamma}$ is proposed by considering the entrainment effect. Closure coefficients are determined by experimental data and resorting to numerical optimization. Present model has been applied to compute four representative cases of free shear flows and successfully compared with experimental data. In particular, the spreading rate, the centreline mean velocity and the profiles of intermittency are calculated with improved accuracy. Also, the proposed ${\nu}_t-{\kappa}-{\gamma}$ model was applied to channel flow by considering the wall effect and the results show good agreements with the Direct Numerical Simulation data.

Prediction of Wall Shear Stresses in Transitional Boundary Layers Using Near-Wall Mean Velocity Profiles

  • Jeon, Woo-Pyung;Shin, Sung-Ho;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1305-1318
    • /
    • 2000
  • The local wall shear stress in transitional boundary layer was estimated from the near-wall mean velocity data using the principle of Computational Preston Tube Method(CPM). The previous DNS and experimental databases of transitional boundary layers were used to demonstrate the accuracy of the method and to provide the applicable range of wall unit y(sup)+. The skin friction coefficients predicted by the CPM agreed well with those from previous studies. To reexamine the applicability of CPM, near-wall hot-wire measurement were conducted in developing transitional boundary layers on a flat plate with different freestream turbulence intensities. The intermittency profiles across the transitional boundary layers were reasonably obtained from the conditional sampling technique. An empirical correlation between the representative intermittency near the wall and free parameter K$_1$of the extended wall function of CPM has been newly proposed using the present and other experimental data. The CPM has been verified as a useful tool to measure the wall shear stress in transitional boundary layer with reasonable accuracy.

  • PDF

FLUID DYNAMIC IMPLICATIONS OF THE INTERMITTENCY OF TURBULENT MOMENTUM TRANSPORT IN THE OCEANIC TURBULENT BOUNDARY LAYER (海洋 亂流境界層內 斷續性의 流體力學的 意義)

  • Chung, Jong Yul;Grosch, Chester E.
    • 한국해양학회지
    • /
    • v.18 no.2
    • /
    • pp.104-110
    • /
    • 1983
  • The Intermittent phenomena of the turbulent momentrm transports were closely examined in order to know the nature of intermittency and its fluid dynamic implications in the oceanic turbulent boundary layer. Also the connection between the observed intermittency and the bursting phenomenon was studied in detail. In this investigation, strong intermittency of turbulent momentum transports were found and the peak values of Reynolds stress (i,e., u'w') was about 408 times greater than average Reynolds stress (u',w') in the mid-layer and 270 times greater in the uppcrlayer of the turbulent boundary layer. These values are far greater than presently known maximum value, namely 30 times greater than the average Reynolds stress reported by Gordon (1974) and Heathersaw (1974). The distribution of Reynolds stress were extremely non-normal with the mean peak occurrence period of 5 minutes in the mid-layer and 1. 1 minutes in the upper layer of the turbulent boundary layer. Each teak lasted about 2 seconds in the mid-layer and 1.1 seconds in the upper layer of the turbulent boundary layer. Our dimensionless period of peak occurrence are found to be 33.3 in the mid-layer and 7.3 in the upper-layer, which are substantially larger than the often quoted values of 3.2-6.8 for the bursting period (Jackson, 1976). Some workers have interpreted that the intermittency phenomenon is the retlect of burst across their probe of the currentmeter (Gordon, 1974; Heathersaw, 1974). However, it was known that the burst can be found very near bottom boundary with smoothed bottom (i,e., friction Reynolds number$\leq$3,000) in the laboratory experiments. Through this investigation, it was found that the intermittent strength of the turbulent momentum transports does not conclusively indicate the characteristic feature of the boundary layer turbulence with a rough bottom (i,e., friction Reynolds number$\geq$10$\^$5/).

  • PDF

On-off intermittency in an intracavity frequency doubled Nd:YAG laser pumped by a laser diode (반도체 레이저로 펌핑하는 Nd:YAG 레이저의 내부 발생형 제2차 고조파의 On-Off간헐성)

  • 김규욱;추한태;김동익;박영재;김칠민
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.1
    • /
    • pp.73-78
    • /
    • 2002
  • We have investigated the lasing characteristics of intracavity second harmonics of a Nd:YAG laser pumped by a laser diode. Through the analysis of the scalings of laminar phases, we verify that the second harmonics are generated through on-off intermittency. The intermittent behavior can be reproduced by a numerical simulation with rate equations.

Capacity Cost of Renewable Energy Considering Intermittence Problem (Intermittence Problem을 고려한 신재생에너지의 Capacity Cost)

  • Moon, Changkwon;Choi, Hyukjoon;Kang, Minju
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.133.2-133.2
    • /
    • 2011
  • 2012년 RPS 제도가 시행되게 되면 발전설비용량 기준 500MW이상의 발전 사업자는 전체 전력생산량 중 일정 부분을 신재생에너지로 생산, 공급해야 한다. 최근 지경부에서 고시한 제5차 전력수급기본계획에서도 이러한 점을 반영하여 2024년까지 전체 발전량의 8.9%를 신재생에너지원으로 대체하겠다고 발표하였다. 신재생에너지 기술 수준, 시장여건 등을 고려하였을 때 앞으로 가장 크게 보급량(penetration)이 증가할 것으로 보이는 신재생에너지원은 태양광과 풍력인데 이 두 에너지원은 간헐성(intermittency)으로 인한 비급전성이라는 특징을 가지고 있어 향후 그 비중이 증가하면 전력계통의 안정성에 미치는 영향에 대해 고려해야할 것으로 보인다. 본 연구에서는 태양광과 풍력의 간헐성을 고려했을 때 추가적으로 발생하는 비용을 고려했을 경우 각 에너지원의 용량비용은 어떻게 되는지 알아보고자 한다.

  • PDF