• Title/Summary/Keyword: Intermetallics

Search Result 115, Processing Time 0.025 seconds

High Temperature Oxidation of Ti3Al/SiCp Composites in Oxygen

  • An, Sang-Woo;Kim, Young-Jig;Park, Sang-Whan;Lee, Dong-Bok
    • The Korean Journal of Ceramics
    • /
    • v.5 no.1
    • /
    • pp.44-49
    • /
    • 1999
  • In order to improve the oxidation resistance of $Ti_3Al$, Ti-25at.%Al composites containing dispersed particles of 15wt.%SiC were prepared by a tubular mixing-spark plasma sintering method. The sintered composites had $Ti_3Al$, SiC, $Ti_5Si_3$ and TiC. The presence of $Ti_5Si_3$ and TiC indicates that some of SiC particles reacted with Ti to from more stable phases. From oxidation tests at 800, 900 and $1000^{\circ}C$ under 1 atm of pure oxygen, it was found that the oxidation rate of Ti3Al was effectively reduced by the addition of SiC. The scale was primarily composed of an outer $TiO_2$ layer having some $Al_2O_3 $islands, an intermediate relatively thick $Al_2O_3 $ layer, and an inner $TiO_2+Al_2O_3+SiO_2$ mixed layer. Beneath the scale, Kirkendall voids were seen.

  • PDF

Interfacial Characteristics of Al-Cu Cast Composites for High Conductivity Applications (고전도성 부품용 Al-Cu 주조복합재료의 계면 특성)

  • Kim, Jeong-Min;Kim, Nam-Hoon;Ko, Se-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.38 no.3
    • /
    • pp.55-59
    • /
    • 2018
  • To optimize the conductivity and to reduce the weight by as much as possible, Al-Cu composites were prepared through a suction-casting procedure. Pure copper metal foam was infiltrated by melted aluminum with the use of the vacuum, after which warm rolling was conducted to remove several remaining pores at the interface between the Cu foam and the aluminum matrix. Despite the short casting time, significant dissolution of Cu into the melt was observed. Moreover, it was found that various Al-Cu intermetallic compounds arose at the interface during the isothermal heating process after the casting and rolling steps. The average thickness of the Al-Cu intermetallic compound tended to increase in proportion to the heating time. The electrical and thermal conductivity levels of the cast composites were found to be comparatively low, mainly due to the dissolution of the Cu foam and the formation of intermetallics at the interface.

Evaluation of the Reactivity of Bulk Nano Ni/Al Powder Manufactured by Shock Compaction Process (충격압분공정으로 제조된 나노 니켈/알루미늄 혼합분말재의 특성 평가)

  • Kim, W.;Ahn, D.H.;Park, L.J.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.4
    • /
    • pp.216-221
    • /
    • 2017
  • Recently, interest in multifunctional energetic structural materials (MESMs) has grown due to their multifunctional potential, especially in military applications. However, there are few studies about extrinsic factors that govern the reactivity of MESMs. In this paper, a shock compaction process was performed on the nano Ni/Al-mixed powder to investigate the effect of particle size on the shock reaction condition. Additionally, heating the statically compacted specimen was also performed to compare the mechanical properties and microstructure between reacted and unreacted material. The results show that the agglomerated structure of nanopowders interrupts the reaction by reducing the elemental boundary. X-ray diffraction analysis shows that the NiAl and $Ni_3Al$ intermetallics are formed on the reacted specimen. The microhardness results show that the $Ni_3Al$ phase has a higher hardness than NiAl, but the portion of $Ni_3Al$ in the reacted specimen is minor. In conclusion, using Ni/Al composites as a reactive material should focus on energetic use.

A Study on the Nano Alloy Powders Synthesized by Simultaneous Pulsed Wire Evaporation (S-PWE) method II - Synthesis of Ee-Al Nano Alloy Powders (동시 전기 폭발법에 의한 나노 합금 분말 제조에 관한 연구 II - Fe-Al alloy 분말 제조)

  • ;;;O. M.;Yu. A. Kotov
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.105-110
    • /
    • 2004
  • In this study the possibility to obtain a homogeneous mixture and to produce solid solutions and intermetallic compounds of Fe and Al nano particles by simultaneous pulsed wire evaporation (S-PWE) have been investigated. The Fe and Al wires with 0.45 mm in diameter and 35 mm in length were continuously co-fed by a special mechanism to the explosion chamber and simultaneously exploded. The characteristics, e.g., phase composition, particle shape, and specific surface area of Fe-Al nano powders have been analyzed. The synthesized powders, beside for Al and $\alpha$-Fe, contain significant amount of a high-temperature phase of $\gamma$-Fe, Fe Al and traces of other intermetallics. The phase composition of powders could be changed over broad limits by varying initial explosion conditions, e.g. wire distance, input energy, for parallel wires of different metals. The yield of the nano powder is as large as 40 wt % and the powder may include up to 46 wt % FeAl as an intermetallic compound.

Magnetic properties and crystal structures of $Sm_yGd_{2-y}Fe_{17-x}Si_x$ alloys prepared by induction melting

  • Nam Joong-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.1
    • /
    • pp.8-11
    • /
    • 2006
  • The magnetic properties and crystal structures of $Sm_yGd_{2-y}Fe_{17-x}Si_x$ alloys ($0\leq\;x\leq2\;and\;y=0\~1.67$) have been investigated using x-ray diffraction and magnetic measurements. The $Sm_yGd_{2-y}Fe_{17-x}Si_x$ specimens were crystallized to the rhombohedral $Th_2Zn_{17}-structure$ with less than $5mol\%$ of impurities. The unit cells of the mixed rare-earth samples are smaller than those of $Sm_2Fe_{17}\;and\;Gd_2Fe_{17}.$ For example, the $T_c\;of\;SmGdFe_{17}\;(255^{\circ}C)$ is approximately 160 and $800^{\circ}C)$ higher than that of $Sm_2Fe_{17}\;and\;Gd_2Fe_{17},$ respectively. The $T_cs$ measured for $Sm_yGd_{2-y}Fe_{17-x}Si_x$ samples, 280 to $290^{\circ}C)$, are among the highest values observed for a $R_2Fe_{17-x}M_x$ intermetallic where M is a substituent other than cobalt.

Effect of Cr, Mo and W on the Microstructure of Al Hot Dipped Carbon Steels

  • Trung, Trinh Van;Kim, Min Jung;Park, Soon Yong;Yadav, Poonam;Abro, Muhammad Ali;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • A low carbon steel, Fe-2.25%Cr steel (ASTM T22), and Fe-2.25%Cr-1.6%W steel (ASTM T23) were aluminized by hot dipping into molten Al baths. After hot-dipping, a thin Al-rich topcoat and a thick alloy layer formed on the surface. The topcoat consisted primarily of a thin Al layer that contained a small amount of Fe, whereas the alloy layer consisted of Al-Fe intermetallics such as $Al_5Fe_2$ and AlFe. Cr, Mo, and W in T22 and T23 steels reduced the thickness of the topcoat and the alloy layer, and flattened the reaction front of the aluminized layer, when compared to the low carbon steel.

The Solderability and Mechanical Properties of In, Bi Added Sn-9Zn/Cu Joint (In, Bi가 첨가된 Sn-9wt.%Zn/Cu 접합부의 납땜성 및 기계적 성질)

  • Baek, Dae-Hwa;Lee, Kyung-Ku;Lee, Doh-Jae
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.116-121
    • /
    • 2000
  • Interfacial reaction and mechanical properties between Sn-Zn-X ternary alloys(X : 3wt.%In, 4wt.%Bi) and Cu-substrate were studied. Cu/solder joints were subjected to aging treatments for up to 50days to see interfacial reaction at $100^{\circ}C$ and then were examined changes of microstructure and interfacial compound by optical microscopy, SEM and EDS. Cu/solder joints were aged to 30days and then loaded to failure at cross head speed of 0.3 mm $min^{-1}$ to measure tensile strength. According to the results of the solderability test, additions of In and Bi in the Sn-9wt.%Zn solder improve the wetting characteristics of the alloy and lower the melting temperature. Through the EDS and XRD analysis of Cu/Sn-9wt.%Zn solder joint, it was concluded that the intermetallic compound was the ${\gamma}-Cu_5Zn_8$ phase. Cu-Zn intermetallics at Cu/solder interfaces played an important role in both the microstructure evolution and failure of solder joints. Cu/solder joint strength was decreased by aging treatment, and those phenomenon was closely related to the thickening of intermetallic layer at Cu/solder joints.

  • PDF

Low Temperature Bonding of Copper with Interlayers Coated by Sputtering(Part 1) (스퍼터링 코팅층을 중간재로 사용한 동(Cu)의 저온 접합(제1보))

  • Kim, Dae-Hun
    • 연구논문집
    • /
    • s.24
    • /
    • pp.63-79
    • /
    • 1994
  • This article reports a experimental study of the method to achieve a bond joint at lower temperature in a short time. DC magnetron sputtering of Sn, Sn/Pb, Sn/In and Sn/Cu on copper substrate was provided as an interlayer for Cu to Cu bonding under the air environment. Various examination was conducted and investigated on the effect of experimental parameters such as coating materials, coating time(or coating thickness), bonding temperature and bonding time etc. Bonding was performed at the temperature of $210^\circC-320^\circC$ for 0sec and interfacial reaction between the coated layer and copper substrate was examined using optical, scanning electron microscope and x-ray diffractometer. From the obtained results, it was found that intermetallic compounds layer consisted of $\eta-phase(Cu_6Sn_5)$ and $\beta-phase(Cu_3Sn)$ was formed at the joint interface for almost all coating materials. But the dominant phase formed in the preetched Cu substrate coated with Sn was $\beta-phase$. A characteristic morphology looks like a reaction ring, which was believed as the strong interconnecting regions between two substrates, was found to be formed on the reaction surface of copper substrates. The morphologies and compositions of the intermetallics, which depends on the regions of the reaction surface, was appeared as greatly different. Based on above results, the new bonding process to make the joint at lower temperature for short time can be admitted as a feasible process.

  • PDF

Crystal Structure and Morphology of Nitride Precipitates in TiAl (TiAl에 석출한 질화물의 결정구조와 형태)

  • Han, Chang-Suk;Koo, Kyung-Wan
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.51-56
    • /
    • 2008
  • The crystal structures and morphologies of precipitates in $L1_0$-ordered TiAl intermetallics containing nitrogen were investigated by transmission electron microscopy (TEM). Under aging at an approximate temperature of 1073 K after quenching from 1423 K, TiAl hardens appreciably due to the nitride precipitation. TEM observations revealed that needle-like precipitates, which lie only in one direction parallel to the [001] axis of the $L1_0$-TiAl matrix, appear in the matrix preferentially at the dislocations. Selected area electron diffraction (SAED) pattern analyses showed that the needle-shaped precipitate is perovskite-type $Ti_3AlN$ (P-phase). The orientation relationship between the P-phase and the $L1_0$-TiAl matrix was found to be $(001)_P//(001)_{TiAl}\;and\;[010]_P//[010]_{TiAl}$. By aging at higher temperatures or for longer periods at 1073 K, plate-like precipitates of $Ti_2AlN$ (H-phase) with a hexagonal structure formed on the {111} planes of the $L1_0$-TiAl matrix. The orientation relationship between the $Ti_2AlN$ and the $L1_0$-TiAl matrix is $(0001)_H//(111)_{TiAl}\;and\;_H//_{TiAl}$.

Rapid Sintering of FeAl by Pulsed Current Activated Heating and its Mechanical Properties (펄스 전류 활성 가열에 의한 나노구조의 FeAl 급속소결과 기계적 성질)

  • Jo, Seung-Hoon;Ko, In-Yong;Doh, Jung-Mann;Yoon, Jin-Kook;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.639-643
    • /
    • 2010
  • Nanopowder of FeAl was synthesized by high energy ball milling. Using the pulsed current activated sintering method, a dense nanostuctured FeAl was consolidated within 2 minutes from mechanically synthesized powders of FeAl and horizontally milled powders of Fe+Al. The grain size and hardness of FeAl sintered from horizontally milled Fe+Al powders and high energy ball milled FeAl powder were 150 nm, 50 nm and $466\;kg/mm^2$, $574\;kg/mm^2$, respectively.