• Title/Summary/Keyword: Intermediate pressure

Search Result 274, Processing Time 0.025 seconds

Performance of A Three-Stage Condensation Heat Pump

  • Lee, Yoon-Hak;Jung, Dong-Soo;Kim, Chong-Bo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.55-68
    • /
    • 1999
  • In this study, computer simulation programs were developed for single-stage, two-stage, and three-stage condensation heat pumps and their performance with CFC11, HCFC123, HCFC141b was examined under the same external conditions. The results showed that the coefficient of performance(COP) of an optimized 'non-split type' three-stage condensation heat pump is 25-42% higher than that of a conventional single-stage heat pump. The increase in COP, however, differed among the fluids tested. The improvement in COP is largely due to the decrease in average LMTDs in condensers, which results in the decrease in thermodynamic irreversibility in heat exchange process. For the three-stage heat pump, the highest COP is achieved when the total condenser area is evenly distributed among the three condensers. For the two-stage heat pump, however, the optimum distribution of the total condenser area varies with an individual working fluid. For the three-stage system, 'splitting the condenser cooling water'for the use of intermediate and high pressure subcoolers helps increase the COP further. When the individual cooling water entering the intermediate and high pressure subcoolers is roughly 10% of the total condenser cooling water, the maximum COP is achieved showing roughly an 11% increase in COP as compared to that of the 'non-split type' heat pump.

  • PDF

Optical Characteristics of Oxygen-doped ZnTe Thin Films Deposited by Magnetron Sputtering Method

  • Kim, Seon-Pil;Pak, Sang-Woo;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.253-253
    • /
    • 2011
  • ZnTe semiconductor is very attractive a material for optoelectronic devices in the visible green spectral region because of it has direct bandgap of 2.26 eV. The prototypes of ZnTe light emitting diodes (LEDs) have been reported [1], showing that their green emission peak closely matches the most sensitive region of the human eye. The optoelectronic properties of ZnTe:O film allow to expect a large optical gain in the intermediate emission band, which emission band lies about 0.4-0.6 eV below the conduction band of ZnTe [2]. So, the ZnTe system is useful for the production of high-efficiency multi-junction solar cells [2,3]. In this work, the ZnTe:O thin films were deposited on Al2O3 substrates by using the radio frequency magnetron sputtering system. Three sets of samples were prepared using argon and oxygen as the sputtering gas. The deposition chamber was pre-pumped down to a base pressure of 10-7 Torr before introducing gas. The deposition pressure was fixed at 10-3 Torr throughout this work. During the ZnTe deposition, the substrate temperature was 300 oC. The optical properties were also investigated by using the ultraviolte-visible (UV-Vis) spectrophotometer.

  • PDF

Silicon Etching Process of NF3 Plasma with Residual Gas Analyzer and Optical Emission Spectroscopy in Intermediate Pressure (잔류가스분석기 및 발광 분광 분석법을 통한 중간압력의 NF3 플라즈마 실리콘 식각 공정)

  • Kwon, Hee Tae;Kim, Woo Jae;Shin, Gi Won;Lee, Hwan Hee;Lee, Tae Hyun;Kwon, Gi-Chung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.97-100
    • /
    • 2018
  • $NF_3$ Plasma etching of silicon was conducted by injecting only $NF_3$ gas into reactive ion etching. $NF_3$ Plasma etching was done in intermediate pressure. Silicon etching by $NF_3$ plasma in reactive ion etching was diagnosed through residual gas analyzer and optical emission spectroscopy. In plasma etching, optical emission spectroscopy is generally used to know what kinds of species in plasma. Also, residual gas analyzer is mainly to know the byproducts of etching process. Through experiments, the results of optical emission spectroscopy during silicon etching by $NF_3$ plasma was analyzed with connecting the results of etch rate of silicon and residual gas analyzer. It was confirmed that $NF_3$ plasma etching of silicon in reactive ion etching accords with the characteristic of reactive ion etching.

The investigation of Diesel Spray Combustion in DME HCCI (DME 예혼합기를 분위기로 하는 디젤 분무의 연소에 관한 연구)

  • Lim, Ock-Taeck;Iida, Norimasa
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3329-3334
    • /
    • 2007
  • The purpose of the research is to investigate of diesel spray combustion for simultaneously reduce way NOx and PM. The pressure diesel injection were done into intermediates that are generated by very lean DME HCCI combustion using a RCM. The concentration of intermediate could not be directly measured; we estimated it by CHEMKIN calculation. DME HCCI characteristic is surveyed. Validations of the CHEMKIN calculation were confirmed pressure rise of an experiment and pressure rise of a calculation. Using a framing streak camera captured two dimensional spontaneous luminescence images from chemical species at low temperature reaction(LTR) and high temperature reaction (HTR). Also, the combustion events were observed by high-speed direct photography, the ignition and combustion were analyzed by the combustion chamber pressure profiles.

  • PDF

Advanced Semi-Implicit Method (ASIM) for Hyperbolic Two-Fluid Model (2-유체 모델을 위한 '개선된 Semi-Implicit 기법')

  • Lee, Sung-Jae;Chung, Moon-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2005-2011
    • /
    • 2003
  • Introducing the interfacial pressure jump terms based on the surface tension into the momentum equations of two-phase two-fluid model, the system of governing equations is turned mathematically into the hyperbolic system. The eigenvalues of the equation system become always real representing the void wave and the pressure wave propagation speeds as shown in the previous manuscript. To solve the interfacial pressure jump terms with void fraction gradients implicitly, the conventional semi-implicit method should be modified as an intermediate iteration method for void fraction at fractional time step. This advanced semi-implicit method (ASIM) then becomes stable without conventional additive terms. As a consequence, including the interfacial pressure jump terms with the advanced semi-implicit method, the numerical solutions of typical two-phase problems can be more stable and sound than those calculated exclusively by using any other terms like virtual mass, or artificial viscosity.

  • PDF

SUPERBUBBLES AS SPACE BAROMETERS

  • GARCIA-SEGURA G.;OEY M. S.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.217-222
    • /
    • 2004
  • High ambient interstellar pressure is suggested as a possible factor to explain the ubiquitous ob-served growth-rate discrepancy for supernova-driven super bubbles and stellar wind bubbles. Pressures of P / k ${\~} 10^5\;cm^{-3}$ K are plausible for regions with high star formation rates, and these values are intermediate between the estimated Galactic mid-plane pressure and those observed in starburst galaxies. High-pressure components also are commonly seen in Galactic ISM localizations. We demonstrate the sensitivity of shell growth to the ambient pressure, and suggest that super bubbles ultimately might serve as ISM barometers.

Current Status of Hot Steam Corrosion Evaluation of the Candidate Materials for Intermediate Heat Exchangers of HTSE System (고온전기분해시스템의 열교환기 후보재료에 대한 고온증기 환경에서의 부식평가 현황)

  • Kim, Minu;Kim, Dong Hoon;Jang, Changheui;Yoon, Duk-Joo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Nuclear hydrogen production using high temperature heat of a very high temperature reactor(VHTR) is one of the most attractive ways of mass hydrogen production without greenhouse gas emission. In many countries, sulfur-iodine(S-I) thermochemical process and high temperature steam electrolysis(HTSE) process are being investigated. In such processes, corrosion behavior of Intermediate heat exchanger materials are the most critical issues. Especially in a HTSE system, several heat exchangers will be facing hot steam conditions. In this paper, the status of high temperature corrosion researches in hot steam and supercritical water conditions are reviewed in view of the implication to HTSE conditions. Based on the review, test condition and plan of the hot steam corrosion of the candidate materials are formulated and described in some details along with the schematics of the test set-up. The test results and subsequent evaluation will be used in development of a interface system between the HTSE hydrogen production system and the VHTR.

  • PDF

Gas Migration in Low- and Intermediate-Level Waste (LILW) Disposal Facility in Korea (중·저준위 방사성폐기물 처분시설 폐쇄후 기체이동)

  • Ha, Jaechul;Lee, Jeong-Hwan;Jung, Haeryong;Kim, Juyub;Kim, Juyoul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.267-274
    • /
    • 2014
  • The first Low- and Intermediate-Level Waste (LILW) disposal facility with 6 silos has been constructed in granite host rock saturated with groundwater in Korea. A two-dimensional numerical modeling on gas migration was carried out using TOUGH2 with EOS5 module in the disposal facility. Laboratory-scale experiments were also performed to measure the important properties of silo concrete related with gas migration. The gas entry pressure and relative gas permeability of the concrete was determined to be $0.97{\pm}0.15bar$ and $2.44{\times}10^{-17}m^2$, respectively. The results of the numerical modeling showed that hydrogen gas generated from radioactive wastes was dissolved in groundwater and migrated to biosphere as an aqueous phase. Only a small portion of hydrogen appeared as a gas phase after 1,000 years of gas generation. The results strongly suggested that hydrogen gas does not accumulate inside the disposal facility as a gas phase. Therefore, it is expected that there would be no harmful effects on the integrity of the silo concrete due to gas generation.

Undrained strength-deformation characteristics of Bangkok Clay under general stress condition

  • Yimsiri, Siam;Ratananikom, Wanwarang;Fukuda, Fumihiko;Likitlersuang, Suched
    • Geomechanics and Engineering
    • /
    • v.5 no.5
    • /
    • pp.419-445
    • /
    • 2013
  • This paper presents an experimental study on the influence of principal stress direction and magnitude of intermediate principal stress on the undrained stress-strain-strength behaviors of Bangkok Clay. The results of torsional shear hollow cylinder and advanced triaxial tests with various principal stress directions and magnitudes of intermediate principal stress on undisturbed Bangkok Clay specimens are presented. The analysis of testing results include: (i) stress-strain and pore pressure behaviors, (ii) stiffness characteristics, and (iii) strength characteristics. The results assert clear evidences of anisotropic characteristics of Bangkok Clay at pre-failure and failure conditions. The magnitude of intermediate principal stress for plane-strain condition is also investigated. Both failure surface and plastic potential in deviatoric plane of Bangkok Clay are demonstrated to be isotropic and of circular shape which implies an associated flow rule. It is also observed that the shape of failure surface in deviatoric plane changes its size, while retaining its circular shape, with the change in direction of major principal stress. Concerning the behavior of Bangkok Clay found from this study, the discussions on the effects of employed constitutive modeling approach on the resulting numerical analysis are made.

Relationships of Loading Rates and Bearing Capacities on Intermediate Soils (재하속도를 이용한 중간토의 지지력 평가)

  • 박중배
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.101-114
    • /
    • 1996
  • In this study, the characteristics of bearing capacity and deformation of intermediate soils are investigated through centrifuge tests. The experimental parameters are footing width, initial stress condition of soils and relative loading rate defined relationship of loading rate and permeability of soils. It is examined that loading rate influences on the bearing capacities and deformations. Based on the test results, some problem of existing specification are introduced in the view of related loading rates and load intensities. Especially it is showed that load intensities magnitude rlre reversed in the same settlement ratio(s/B(%)), due to partial drained effect as well as loading rates in undrained con dition based on the excess pore pressure and deformations measured under loading.

  • PDF