• Title/Summary/Keyword: Interleukin-8 (IL-8)

Search Result 666, Processing Time 0.026 seconds

Immunomodulatory Effects of a Methanol Extract from Opuntia ficus indica on Murine Splenocytes

  • Ahn, Gin-Nae;Kim, Jin-Hee;Park, Eun-Jin;Lim, Yoon-Kyu;Jeon, You-Jin;Jee, Young-Heun
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1316-1321
    • /
    • 2009
  • Multiple beneficial properties of Opuntia ficus indica (OPF) are well established. In the present study, we have investigated the immunological role of OPF extract (OPFE) on murine splenocytes. OPFE dose- and time-dependently enhanced the proliferation of splenocytes without cytotoxicity. Our results also showed that the number of $CD4^+$ helper T cells and CD45R/$B220^+$ pan B cells increased markedly, but not $CD8^+$ cytotoxic T cells or $CD11b^+$ granulocytes/macrophages. In addition, OPFE significantly decreased the production levels of T helper (Th) 1 type cytokines, interferon (IFN)-$\gamma$, and tumor necrosis factor (TNF)-$\alpha$, although had no significantly differences in those of interleukin (IL)-4, a Th2 type cytokine in concanavalin A (Con A)-stimulated blastogenic cells. Furthermore, OPFE alone strongly increased IL-4 production and decreased TNF-$\alpha$ production even in the absence of Con A. On the basis of these results, this study suggests that OPFE enhances immunity by regulating the pro- and anti-inflammatory response, indicating that this extract exerts a marked immunomodulatory effect, confirming its usefulness as therapy for immune-related diseases.

BIRB 796 has Distinctive Anti-inflammatory Effects on Different Cell Types

  • Ryoo, Soyoon;Choi, Jida;Kim, Jaemyung;Bae, Suyoung;Hong, Jaewoo;Jo, Seunghyun;Kim, Soohyun;Lee, Youngmin
    • IMMUNE NETWORK
    • /
    • v.13 no.6
    • /
    • pp.283-288
    • /
    • 2013
  • The pro-inflammatory cytokines tumor necrosis factor-${\alpha}$ (TNF${\alpha}$) and interleukin (IL)-$1{\beta}$ are crucial mediators involved in chronic inflammatory diseases. Inflammatory signal pathways regulate inflammatory cytokine expression-mediated by p38 mitogen activated protein kinase (p38MAPK). Therefore, considerable attention has been given to p38MAPK as a target molecule for the development of a novel anti-inflammatory therapeutics. BIRB 796, one of p38MAPK inhibitor, is a candidate of therapeutic drug for chronic inflammatory diseases. In this study, we investigated the effect of BIRB 796 on inflammatory cytokine productions by lipopolysaccharide (LPS) in different immune cell types. BIRB 796 reduced LPS-mediated IL-8 production in THP-1 cells but not in Raw 264.7 cells. Further analysis of signal molecules by western blot revealed that BIRB 796 sufficiently suppressed LPS-mediated phosphorylation of p38MAPK in both cell types whereas it failed to block inhibitor of kappa B (I-${\kappa}B$) degradation in Raw 264.7 cells. Taken together, these results suggest that the anti-inflammatory function of BIRB 796 depends on cell types.

Ethanolic extract of Red Sweet Pepper (Capsicum annuum L.) regulates the skin inflammation in vitro and in vivo

  • Jin, Yu-Mi;Kim, Seong-Sun;Song, Young-Jae;AYE, AYE;Park, Bog-Im;Soh, Ju-Ryun;Jeon, Yong-Deok;Jin, Jong-Sik
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.120-120
    • /
    • 2019
  • Allergic inflammatory disease has been increased by abnormal lifestyle and food habits. Especially, prevalence of atopic dermatitis (AD) has been elevated and treatment of AD has not been unclear. Red sweet pepper (RSP), named as Capsicum annuum L, has been known as having pharmacological effects such as antioxidant, detoxification and antibacterial effects. However, the beneficial effect of ethanolic extract of RSP on AD has not been partly examined yet. Therefore, the aim of this study was to investigate anti-inflammatory effects of RSP on AD in vitro and in vivo models. The treatment of RSP inhibited the secretion of inflammatory cytokine such as interleukin (IL)-6 and IL-8 in tumor necrosis factor (TNF)-${\alpha}$ and interferon (IFN)-${\gamma}$-stimulated human keratinocyte (HaCaT cell). Also, RSP extract regulated 2,4-dinitroflorobenzene (DNFB)-induced AD-like skin lesions in BALB/c mice. Oral administration of RSP ameliorated DNFB-induced AD-like symptoms. In presented results indicated that RSP inhibited inflammatory cytokines in HaCaT cell and ameliorated AD-like skin lesion through suppression of symptom of DNFB-induced skin inflammation. Thus, RSP might be a potential therapeutic agent for AD.

  • PDF

A Novel Niosomal Combination of Selenium Coupled with Glucantime against Leishmania tropica

  • Mostafavi, Mahshid;Khazaeli, Payam;Sharifi, Iraj;Farajzadeh, Saeedeh;Sharifi, Hamid;Keyhani, Alireza;Parizi, Maryam Hakimi;Kakooei, Sina
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • There is no effective treatment modality available against different forms of leishmaniasis. Therefore, the aim of this study was to improve the penetration and efficacy of selenium and glucantime coupled with niosomes and compared them with their simple forms alone on in vitro susceptibility assays. In this study, the niosomal formulations of selenium and in combination with glucantime were prepared. The size and morphology of the niosomal formulations were characterized and the effectivity of the new formulation was also evaluated using in vitro MTT assay, intra-macrophage model, and gene expression profile. From the results obtained, no cytotoxicity effect was observed for niosomal and simple forms of drugs, as alone or in combination. Niosomal formulations of the drugs significantly showed more inhibitory effects ($P{\leq}0.001$) than the simple drugs when the selectivity index was considered. The gene expression levels of Interleukin (IL-10) significantly decreased, while the level of IL-12 and metacaspase significantly increased ($P{\leq}0.001$). The results of the present study showed that selenium plus glucantime niosome possess a potent anti-leishmanial effect and enhanced their lethal activity as evidenced by the in vitro experiments.

Effects of the cathepsin K inhibitor with mineral trioxide aggregate cements on osteoclastic activity

  • Kim, Hee-Sun;Kim, Soojung;Ko, Hyunjung;Song, Minju;Kim, Miri
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.2
    • /
    • pp.17.1-17.10
    • /
    • 2019
  • Objectives: Root resorption is an unexpected complication after replantation procedures. Combining anti-osteoclastic medicaments with retrograde root filling materials may avert this resorptive activity. The purpose of this study was to assess effects of a cathepsin K inhibitor with calcium silicate-based cements on osteoclastic activity. Methods: MC3T3-E1 cells were cultured for biocompatibility analyses. RAW 264.7 cells were cultured in the presence of the receptor activator of nuclear factor-kappa B and lipopolysaccharide, followed by treatment with Biodentine (BIOD) or ProRoot MTA with or without medicaments (Odanacatib [ODN], a cathepsin inhibitor and alendronate, a bisphosphonate). After drug treatment, the cell counting kit-8 assay and Alizarin red staining were performed to evaluate biocompatibility in MC3T3-E1 cells. Reverse-transcription polymerase chain reaction, tartrate-resistant acid phosphatase (TRAP) staining and enzyme-linked immunosorbent assays were performed in RAW 264.7 cells to determine the expression levels of inflammatory cytokines, interleukin $(IL)-1{\beta}$, IL-6, tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and prostaglandin E2 (PGE2). Data were analyzed by one-way analysis of variance and Tukey's post hoc test (p < 0.05). Results: Biocompatibility results showed that there were no significant differences among any of the groups. RAW 264.7 cells treated with BIOD and ODN showed the lowest levels of $TNF-{\alpha}$ and PGE2. Treatments with BIOD + ODN were more potent suppressors of inflammatory cytokine expression (p < 0.05). Conclusion: The cathepsin K inhibitor with calcium silicate-based cement inhibits osteoclastic activity. This may have clinical application in preventing inflammatory root resorption in replanted teeth.

Ethanol extract separated from Sargassum horneri (Turner) abate LPS-induced inflammation in RAW 264.7 macrophages

  • Sanjeewa, K.K. Asanka;Jayawardena, Thilina U.;Kim, Hyun-Soo;Kim, Seo-Young;Ahn, Ginnae;Kim, Hak-Ju;Fu, Xiaoting;Jee, Youngheun;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.2
    • /
    • pp.6.1-6.10
    • /
    • 2019
  • Background: This study is aimed at identifying the anti-inflammatory properties of 70% ethanol extract produced from an edible brown seaweed Sargassum horneri (SJB-SHE) with industrial-scale production by Seojin Biotech Co. Ltd. S. horneri is a rich source of nutrient and abundantly growing along the shores of Jeju, South Korea. Methods: Here, we investigated the effect of SJB-SHE on LPS-activated RAW 264.7 macrophages. The cytotoxicity and NO production of SJB-SHE were evaluated using MTT and Griess assays, respectively. Additionally, protein expression and gene expression levels were quantified using ELISA, Western blots, and RT-qPCR. Results: Our results indicated that pre-treatment of RAW 264.7 macrophages with SJB-SHE significantly inhibited LPS-induced NO and $PGE_2$ production. SJB-SHE downregulated the proteins and genes expression of LPS-induced iNOS and COX2. Additionally, SJB-SHE downregulated LPS-induced production of pro-inflammatory cytokines (tumor necrosis factor-${\alpha}$, interleukin (IL)-6, and IL-$1{\beta}$). Furthermore, SJB-SHE inhibited nuclear factor kappa-B (NF-${\kappa}B$) activation and translocation to the nucleus. SJB-SHE also suppressed the phosphorylation of mitogen-activated protein kinases (ERK1/2 and JNK). Conclusions: Collectively, our results demonstrated that SJB-SHE has a potential anti-inflammatory property to use as a functional food ingredient in the future.

Interruption of Helicobacter pylori-Induced NLRP3 Inflammasome Activation by Chalcone Derivatives

  • Choi, Hye Ri;Lim, Hyun;Lee, Ju Hee;Park, Haeil;Kim, Hyun Pyo
    • Biomolecules & Therapeutics
    • /
    • v.29 no.4
    • /
    • pp.410-418
    • /
    • 2021
  • Helicobacter pylori causes chronic gastritis through cag pathogenicity island (cagPAI), vacuolating cytotoxin A (VacA), lipopolysaccharides (LPS), and flagellin as pathogen-related molecular patterns (PAMPs), which, in combination with the pattern recognition receptors (PRRs) of host cells promotes the expression and secretion of inflammation-causing cytokines and activates innate immune responses such as inflammasomes. To identify useful compounds against H. pylori-associated gastric disorders, the effect of chalcone derivatives to activate the nucleotide-binding oligomerization domain (NOD)-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome was examined in an H. pylori-infected human monocytic THP-1 cell line in this study. Among the five synthetic structurally-related chalcone derivatives examined, 2'-hydroxy-4',6'-dimethoxychalcone (8) and 2'-hydroxy-3,4,5-trimethoxychalcone (12) strongly blocked the NLRP3 inflammasome in H. pylori-infected THP-1 cells. At 10 μM, these compounds inhibited the production of active IL-1β, IL-18, and caspase-1, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) oligomerization, but did not affect the expression levels of NLRP3, ASC, and pro-caspase-1. The interruption of NLRP3 inflammasome activation by these compounds was found to be mediated via the inhibition of the interleukin-1 receptor-associated kinase 4 (IRAK4)/IκBα/NF-κB signaling pathway. These compounds also inhibited caspase-4 production associated with non-canonical NLRP3 inflammasome activation. These results show for the first time that certain chalcones could interrupt the activation of the NLRP3 inflammasome in H. pylori-infected THP-1 cells. Therefore, these chalcones may be helpful in alleviating H. pylori-related inflammatory disorders including chronic gastritis.

Effects of Saccharomyces cerevisiae and phytase co-fermentation of wheat bran on growth, antioxidation, immunity and intestinal morphology in broilers

  • Chuang, Wen-Yang;Lin, Li-Jen;Hsieh, Yun-Chen;Chang, Shen-Chang;Lee, Tzu-Tai
    • Animal Bioscience
    • /
    • v.34 no.7
    • /
    • pp.1157-1168
    • /
    • 2021
  • Objective: The aim of this study was to investigate the effects of different amounts of wheat bran (WB) inclusion and postbiotics form by Saccharomyces cerevisiae and phytase co-fermented wheat bran (FWB) on the growth performance and health status of broilers. Methods: Study randomly allocated a total of 300 male broilers to a control and 4 treatment groups (5% WB, 5% FWB, 10% WB, and 10% FWB inclusion, respectively) with each pen having 20 broilers and 3 pens per treatment. Results: The WB does not contain enzymes, but there are 152.8, 549.2, 289.5, and 147.1 U/g dry matter xylanase, protease, cellulase and β-glucanase in FWB, respectively. Furthermore, FWB can decrease nitric oxide release of lipopolysaccharide stimulated chicken peripheral blood mononuclear cells by about two times. Results show that 10% FWB inclusion had significantly the highest weight gain (WG) at 1 to 21 d; 5% FWB had the lowest feed conversion rate at 22 to 35 d; 10% WB and 10% FWB inclusion have the highest villus height and Lactobacillus spp. number in caecum; and both 5% and 10% FWB can increase ash content in femurs. Compared to control group, all treatments increase mucin 2, and tight junction (TJ), such as occludin, claudin-1, zonula occludens-1, and mRNA expression in ileum by at least 5 folds. In chicken peripheral blood mononuclear cells, nicotinamide adenine dinucleotide phosphate-oxidase-1 mRNA expression decreases from 2 to 5 times, and glutamate-cysteine ligase catalytic subunit mRNA expression also increases in all treatment groups compared to control group. The mRNA expression of pro-inflammatory cytokines, including interleukin-6 (IL-6), nuclear factor-κB, and IL-1β, decreases in 5% and 10% FWB groups compared to control group. Conclusion: To summarize, both WB and FWB inclusion in broilers diets increase TJ mRNA expression and anti-oxidation and anti-inflammation, but up to 10% FWB groups have better WG in different stages of broiler development.

Mesenchymal Stem Cells Suppress Severe Asthma by Directly Regulating Th2 Cells and Type 2 Innate Lymphoid Cells

  • Shin, Jae Woo;Ryu, Seungwon;Ham, Jongho;Jung, Keehoon;Lee, Sangho;Chung, Doo Hyun;Kang, Hye-Ryun;Kim, Hye Young
    • Molecules and Cells
    • /
    • v.44 no.8
    • /
    • pp.580-590
    • /
    • 2021
  • Patients with severe asthma have unmet clinical needs for effective and safe therapies. One possibility may be mesenchymal stem cell (MSC) therapy, which can improve asthma in murine models. However, it remains unclear how MSCs exert their beneficial effects in asthma. Here, we examined the effect of human umbilical cord blood-derived MSCs (hUC-MSC) on two mouse models of severe asthma, namely, Alternaria alternata-induced and house dust mite (HDM)/diesel exhaust particle (DEP)-induced asthma. hUC-MSC treatment attenuated lung type 2 (Th2 and type 2 innate lymphoid cell) inflammation in both models. However, these effects were only observed with particular treatment routes and timings. In vitro co-culture showed that hUC-MSC directly downregulated the interleukin (IL)-5 and IL-13 production of differentiated mouse Th2 cells and peripheral blood mononuclear cells from asthma patients. Thus, these results showed that hUC-MSC treatment can ameliorate asthma by suppressing the asthmogenic cytokine production of effector cells. However, the successful clinical application of MSCs in the future is likely to require careful optimization of the route, dosage, and timing.

Multifunctional Probiotic and Functional Properties of Lactiplantibacillus plantarum LRCC5314, Isolated from Kimchi

  • Yoon, Seokmin;Cho, Hyeokjun;Nam, Yohan;Park, Miri;Lim, Ahyoung;Kim, Jong-Hwa;Park, Jaewoong;Kim, Wonyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.72-80
    • /
    • 2022
  • In this study, the survival capacity (acid and bile salt tolerance, and adhesion to gut epithelial cells) and probiotic properties (enzyme activity-inhibition and anti-inflammatory activities, inhibition of adipogenesis, and stress hormone level reduction) of Lactiplantibacillus plantarum LRCC5314, isolated from kimchi (Korean traditional fermented cabbage), were investigated. LRCC5314 exhibited very stable survival at ph 2.0 and in 0.2% bile acid with 89.9% adhesion to Caco-2 intestinal epithelial cells after treatment for 2 h. LRCC5314 also inhibited the activities of α-amylase and α-glucosidase, which are involved in elevating postprandial blood glucose levels, by approximately 72.9% and 51.2%, respectively. Treatment of lipopolysaccharide (LPS)-stimulated RAW 264.7 cells with the LRCC5314 lysate decreased the levels of the inflammatory factors nitric oxide, tumor necrosis factor (TNF-α), interleukin (IL)-1β, and interferon-γ by 88.5%, 49.3%, 97.2%, and 99.8%, respectively, relative to those of the cells treated with LPS alone. LRCC5314 also inhibited adipogenesis in differentiating preadipocytes (3T3-L1 cells), showing a 14.7% decrease in lipid droplet levels and a 74.0% decrease in triglyceride levels, as well as distinct reductions in the mRNA expression levels of adiponectin, FAS, PPAR/γ, C/EBPα, TNF-α, and IL-6. Moreover, LRCC5314 reduced the level of cortisol, a hormone with important effect on stress, by approximately 35.6% in H295R cells. L. plantarum LRCC5314 is identified as a new probiotic with excellent in vitro multifunctional properties. Subsequent in vivo studies may further demonstrate its potential as a functional food or pharmabiotic.