• Title/Summary/Keyword: Interleukin-1B

Search Result 751, Processing Time 0.038 seconds

Inhibitory Effects of Triterpenoids on Interleukin-8/CINC-1 Induction in LPS-Stimulated Rat Peritoneal Macrophages

  • Min, Bok-Gi;Lee, Gyeong-Im;Ha, Joo-Young;Min, Kyung-Rak;Kim, Ju-Sun;Kang, Sam-Sik;Kim, Young-Soo
    • Natural Product Sciences
    • /
    • v.2 no.1
    • /
    • pp.48-55
    • /
    • 1996
  • The CINC-1 is a member of rat interleukin-8 with chemotactic and activating properties to neutrophils. The CINC-1 induction in LPS-stimulated rat peritoneal macrophages was analyzed using a sensitive enzyme-linked immunosorbent assay. The peritoneal macrophages contained about 3 ng/ml as a basal level, and induced to maximal 18 ng/ml of CINC-1 by stimulation with 5 ${\mu}g/ml$ of LPS. Antiinflammatory steroids of dexamethasone and triamcinolon significantly suppressed the CINC-1 induction, where as aspirin and idomethacin did not show suppression. Inhibitory effects on the CINC-1 induction by natural triterpenoids having steroidal structures were analyzed. Among the 39 kinds of triterpenoids isolated from herbal medicines, acacigenin B and nigaichigoside F1 exhibited the highest suppression on the CINC-1 induction.

  • PDF

Licochalcone B Exhibits Anti-inflammatory Effects via Modulation of NF-κB and AP-1

  • Kim, Jin-Kyung;Jun, Jong-Gab
    • Biomedical Science Letters
    • /
    • v.21 no.4
    • /
    • pp.218-226
    • /
    • 2015
  • The present study investigated the mechanisms of licochalcone B (LicB)-mediated inhibition of the inflammatory response in murine macrophages. RAW264.7 murine macrophages were cultured in the absence or presence of lipopolysacharide (LPS) with LicB. LicB suppressed the generation of nitric oxide and the pro-inflammatory cytokines interleukin (IL)-$1{\beta}$, IL-6 and tumor necrosis factor-${\alpha}$. LicB also inhibited the expression of mRNA for inducible nitric oxide synthase and pro-inflammatory cytokines induced by LPS. Moreover, LicB inhibited nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and activator protein-1 translocation into the nucleus in a dose-dependent manner. Thus, LicB mainly exerts its anti-inflammatory effects by inhibiting the LPS-induced NF-${\kappa}B$ and activator protein-1 signaling pathways in macrophages, which subsequently diminishes the expression and release of various inflammatory mediators. LicB shows promise as a therapeutic agent in inflammatory diseases.

Anti-inflammatory effects of proanthocyanidin-rich red rice extract via suppression of MAPK, AP-1 and NF-κB pathways in Raw 264.7 macrophages

  • Limtrakul, Pornngarm;Yodkeeree, Supachai;Pitchakarn, Pornsiri;Punfa, Wanisa
    • Nutrition Research and Practice
    • /
    • v.10 no.3
    • /
    • pp.251-258
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Several pharmacological properties of red rice extract have been reported including anti-oxidant, anti-tumor, and reduced cancer cell invasion. This study was conducted to evaluate the anti-inflammatory effects of red rice extract on the production of inflammatory mediators in lipopolysaccharide (LPS)-induced Raw 264.7 macrophages. MATERIALS/METHODS: Pro-inflammatory cytokines including tumor necrosis factor-${\alpha}$ and interleukin-6 were determined by ELISA and cyclooxygenase-2 and inducible nitric oxide synthase expression was evaluated using western blot analysis. In addition, the signaling pathway controlling the inflammatory cascade such as nuclear factor kappa B ($NF-{\kappa}B$), activator proteins-1 (AP-1), and mitogen-activated protein kinase (MAPK) was determined. RESULTS: Our results showed that red rice polar extract fraction (RR-P), but not non-polar extract fraction, inhibited interleukin-6, tumor necrosis factor-${\alpha}$, and nitric oxide production in LPS-induced Raw 264.7 cells. RR-P also reduced the expression of inflammatory enzymes, inducible nitric oxide synthase, and cyclooxygenase-2. In addition, activation of AP-1 and $NF-{\kappa}B$ transcription factor in the nucleus was abrogated by RR-P. RR-P inhibited the phosphorylation of extracellular signaling-regulated kinase 1/2, c-Jun NH2-terminal kinase, and p38 MAPK signaling responsible for the expression of inflammatory mediators in LPS-stimulated Raw 264.7 cells. Based on chemical analysis, high amounts of proanthocyanidin and catechins were detected in the RR-P fraction. However, only proanthocyanidin reduced $NF-{\kappa}B$ and AP-1 activation in LPS-activated Raw 264.7 cells. CONCLUSION: These observations suggest that the anti-inflammatory properties of RR-P may stem from the inhibition of pro-inflammatory mediators via suppression of the AP-1, $NF-{\kappa}B$, and MAPKs pathways.

Roots of Daucus carota sativa abrogates acute phase of Inflammation by the Inhibition of NO and Pro-Inflammatory Cytokine Production (NO와 Pro-Inflammatory Cytokine의 억제를 통한 호라복(胡蘿蔔)의 항염증효과)

  • Lee, Dong-Jin;Park, Sang-Mi;Hwangbo, Min;Jung, Tae-Young;Kim, Sang-Chan;Jee, Seon-Young
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.26 no.2
    • /
    • pp.45-57
    • /
    • 2013
  • Objectives : Daucus carota sativa has been frequently used as food supplements in many of the Asian countries, and a nutritional medical drug in traditional medicine. This research investigated the effects of Daucus carota sativa extract (DCE) on acute phases of inflammation in Raw 264.7 cells treated with lipopolysaccharide (LPS) in terms of the inhibition of nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$) and pro-inflammatory cytokines production. Methods : NO, $PGE_2$, tumor necrosis factor (TNF)-${\alpha}$, interleukin-$1{\beta}$ and interleukin-6 contents were assayed by ELISA, and expressions of inflammation-related proteins such as inducible NO synthase (iNOS) were determined by immunoblot analyses. Results : DCE treatment attenuated the LPS ability to increase the productions of NO and $PGE_2$ as well as the protein level of iNOS in a concentration-dependent manner. Consistently, treatment of the cells with DCE suppressed the production of TNF-${\alpha}$, interleukin-$1{\beta}$ and interleukin-6. DCE also caused decreases of inhibitor of ${\kappa}B{\alpha}$ phosphorylation induced by LPS in the cells, which means DCE inhibition of NF-${\kappa}B$ activity. Furthermore, DCE blocked LPS-induced phosphorylation of p38 and SAPK/JNK. Conclusion : This study showing here may be of help to understand the action mechanism of DCE, and provide the information for the medical use of Daucus carota sativa for the inflammatory disease.

Anti-arthritic Effects of Buthus martensi Karsch Herbal Acupuncture, Inhibiting Interleukin-1-induced Expression of Nitric Oxide Synthase and Production of Nitric Oxide in Human Chondrocytes (전갈 약침액의 인체연골세포에서 nitric oxide synthase의 interleukin-1 유도 유전형질 발현과 nitric oxide의 생산의 억제에 관한 연구)

  • Cho, Hyun-seok;Kim, Kap-sung
    • Journal of Acupuncture Research
    • /
    • v.20 no.1
    • /
    • pp.104-119
    • /
    • 2003
  • 목적 : 면역억제 작용을 지닌 것으로 알려진 전갈약침(BMK)의 IL-1으로 야기된 1차성 골관절염 인체 연골 세포에 대한 항염증 효과 골 기능 효과에 대해 연구하였다. 방법 : 골관절염 연골에서 채취된 인체 연골세포는 ID-1(2ng/ml)에 의해 처리되어졌으며, IL-1과 BMK($10{\mu}g/ml$)를 함께 처리한 연골세포와 비교하였다. 결과 : IL-1 단독처리된 연골세포에 비해 BMK가 함께 처리된 연골세포에서 연골세포의 손실과 퇴화의 중요한 요소인 NO의 생산량이 의미있게 저하되었다. IL-1단독으로 처리된 연골세포보다 IL-1과 BMK가 함께 처리된 연골세포에서 iNOS mRNA의 단백질 합성이 의미있게 감소하였다. 또한, 전사인자로서의 NF-B의 활성화가 IL-1 단독으로 처리된 연골세포에 비하여 BMK가 함께 처리된 군에서 상대적으로 의미있게 억제되었다. 결론: 이상의 결과를 종합하면 BMK가 인제 골관절염 연골에 있어서 NF-B 활성화에 의존한 IL-1 유도염증의 치료상에 효과적인 반응억제제임을 시사하며, 골 세포의 골 재흡수 활동에 효과적임을 시사한다.

  • PDF

The Effect of Allergic Inflamation by Sophora Flavescens Aiton Extract Ion Through Inhibition of the $NF{\kappa}B$, JNK and p38 Pathway (고삼(苦蔘)에탄올 추출물이 $NF{\kappa}B$ 및 JNK, p38 조절을 통한 알레르기성 염증에 미치는 영향)

  • Lee, Ji-Young;Park, Seong-Sik
    • Journal of Sasang Constitutional Medicine
    • /
    • v.21 no.1
    • /
    • pp.139-149
    • /
    • 2009
  • 1. Objectives The roots of Sophora flavescens Aiton (SFA) are widely used as a herbal remedy for allergic inflammation. In this study, we invested the effect of SFA on passive cutaneous anaphylaxis reaction and histamin releas and we demonstrated that SFA suppressed the production of pro-inflammatory cytokines, such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin- 6 (IL-6), and interleukin -8 (IL-8), through inhibition of the $NF{\kappa}B$, JNK and p38 pathway in the human mast cell line, HMC-1. 2. Methods To accomplish this, we invested passive cutaneous anaphylaxis reaction and histamin release at an animal experiment. In addition, we investigated the effect of SFA on the production of inflammation-related cytokines in HMC-1 cells that were co-treated with PMA and A23187, which can induce production of pro-inflammatory cytokines. 3. Results and Conclusions SFA induced passive cutaneous anaphylaxis reaction and histamin releas and supressed the expression of TNF-${\alpha}$, IL-6, and IL-8. In addition, the protein levels of TNF-${\alpha}$ were also decreased by SFA treatment. Furthermore, SFA inhibited the nuclear translocation of nuclear factor $NF{\kappa}B$ through inhibition of the phosphorylation and degradation of $I{\kappa}B-{\alpha}$, which is an inhibitor of $NF{\kappa}B$. Moreover, SFA also inhibited induction of MAPKs (JNK, p38) and $NF{\kappa}B$ promoter-mediated luciferase activity. Taken together, these results suggest that SFA could be used as a treatment for mast cell-derived allergic inflammatory diseases.

  • PDF

Increased Gene Expression in Cultured BEAS-2B Cells Treated with Metal Oxide Nanoparticles

  • Park, Eun-Jung;Park, Kwang-Sik
    • Toxicological Research
    • /
    • v.25 no.4
    • /
    • pp.195-201
    • /
    • 2009
  • Recent publications showed that metal nanoparticles which are made from $TiO_2,\;CeO_2,\;Al_2O_3,\;CuCl_2,\;AgNO_3$ and $ZnO_2$ induced oxidative stress and pro-inflammatory effects in cultured cells and the responses seemed to be common toxic pathway of metal nanoparticles to the ultimate toxicity in animals as well as cellular level. In this study, we compared the gene expression induced by two different types of metal oxide nanoparticles, titanium dioxide nanoparticles (TNP) and cerium dioxide nanoparticles (CNP) using microarray analysis. About 50 genes including interleukin 6, interleukin 1, platelet-derived growth factor $\beta$, and leukemia inhibitory factor were induced in cultured BEAS2B cells treated with TNP 40 ppm. When we compared the induction levels of genes in TNP-treated cells to those in CNP-treated cells, the induction levels were very correlated in various gene categories (r=0.645). This may suggest a possible common toxic mechanism of metal oxide nanoparticles.

Association of a genetic polymorphism of IL1RN with risk of acute pancreatitis in a Korean ethnic group

  • Park, Jin Woo;Choi, Ja Sung;Han, Ki Joon;Lee, Sang Heun;Kim, Eui Joo;Cho, Jae Hee
    • The Korean journal of internal medicine
    • /
    • v.33 no.6
    • /
    • pp.1103-1110
    • /
    • 2018
  • Background/Aims: Several epidemiological studies have validated the association of interleukin gene polymorphisms with acute pancreatitis (AP) in different populations. However, there have been few studies in Asian ethnic groups. We aimed to investigate the relationships between inflammatory cytokine polymorphisms and AP as pilot research in a Korean ethnic group. Methods: Patients who had been diagnosed with AP were prospectively enrolled. DNA was extracted from whole blood, and DNA sequencing was subsequently performed. Single-nucleotide polymorphisms (SNPs) of the interleukin $1{\beta}$ (IL1B), interleukin 1 receptor antagonist (IL1RN), and tumor necrosis factor ${\alpha}$ (TNFA) genes of patients with AP were compared to those of normal controls. Results: Between January 2011 and January 2013, a total of 65 subjects were enrolled (40 patients with AP vs. 25 healthy controls). One intronic SNP (IL1RN -1129T>C, rs4251961) was significantly associated with the risk of AP (odds ratio, 0.304; 95% confidence interval, 0.095 to 0.967; p = 0.043). However, in our study, AP was not found to be associated with polymorphisms in the promoter regions of inflammatory cytokine genes, including IL1B (-118C>T, c47+242C>T, +3954C/T, and -598T>C) and TNFA (-1211T>C, -1043C>A, -1037C>T, -488G>A, and -418G>A). Conclusions: IL1RN -1129T>C (rs4251961) genotypes might be associated with a significant increase of AP risk in a Korean ethnic group.

Glycated Serum Albumin Induces Interleukin-6 Expression in Vascular Smooth Muscle Cells (혈관평활근세포에서 glycated albumin에 의한 interleukin-6 증가에 관여하는 인자에 대한 연구)

  • Baek, Seung-Il;Rhim, Byung-Yong;Kim, Koan-Hoi
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.36-43
    • /
    • 2011
  • Diabetes mellitus is associated with vascular complications. Diabetic patients exhibit high levels of glycated adducts in serum compared to non-diabetic individuals. The aim of this study was to investigate whether extracellular glycated albumin (GA) predisposes vascular smooth muscle cells (VSMCs) to pro-inflammatory phenotype. Exposure of rat aortic smooth muscle cells (AoSMCs) to GA not only enhanced interleukin-6 (IL-6) release but also activated promoter activity of the IL-6 gene. GA-induced IL-6 promoter activation was suppressed by dominant-negative forms of Toll-like receptor (TLR)-4 and myeloid differentiation factor 88 (MyD88), but not by dominant-negative-forms of TLR-2 and TIR-domain-containing adapter-inducing interferon-$\beta$ (TRIF). Extracellular signal-regulated kinase (ERK) inhibition and diphenyleneiodium (DPI) also attenuated IL-6 induction by GA. Mutation at the nuclear factor-${\kappa}B$ (NF-${\kappa}B$)-binding site in the IL-6 promoter region suppressed promoter activation in response to GA. The present study proposes that GA would contribute to inflammatory reaction in the stressed vasculature by inducing IL-6 in VSMCs, and that TLR-4, EKR, and NF-${\kappa}B$ play active roles in the process.

Anti-inflammatory effects of biorenovated Torreya nucifera extract in RAW264.7 cells induced by Cutibacterium acnes (여드름균에 의해 유도된 RAW264.7 세포에서 생물 전환된 비자나무 추출물의 항염증 효과)

  • Hyehyun Hong;Tae-Jin Park;Yu-Jung Lee;Byeong Min Choi;Seung-Young Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.213-220
    • /
    • 2023
  • The most common skin disease, acne, often occurs in adolescence, but it is also detected/observed in adults due to air pollution and drug abuse. One of the causative agents of acne, Cutibacterium acnes (C. acnes) plays a role in the development of skin acne by inducing inflammatory mediators. Torreya nucifera (TN) is an evergreen tree of the family Taxaceae, having well reported antioxidant, anti-proliferative, liver protection, and nerve protection properties. Improvement of these bioactive properties of natural products is one of the purposes of natural product chemistry and pharmaceuticals. We believe biorenovation could be one improvement strategy that utilizes microbial metabolism to produce unique derivatives having enhanced bioactivity. Therefore, in this study, the C. acnes-induced RAW264.7 inflammation model was used to evaluate the anti-inflammatory activity of the biorenovated Torreya nucifera product (TNB). The results showed improved viability of TNB-treated cells compared to TN-treated cells in the concentration range of 50, 100, and 200 ㎍/mL. At non-toxic concentrations, TNB inhibited the production of nitric oxide and prostaglandin E2 by suppression of inducible nitric oxide synthase and cyclooxygenase-2 protein expression. TNB also attenuated the expression of interleukin-1β, interleukin-6, interleukin-8, and tumor necrosis factor-α induced by C. acnes. Furthermore, TNB inhibited the nuclear factor-κB signaling pathway, a transcription factor known to regulate inflammatory mediators. Based on these results, this study suggests the potential of using TNB as natural material for the treatment of acnes and thus, supporting our postulation of biorenovation as an bioactivity improvement strategy.