DOI QR코드

DOI QR Code

Increased Gene Expression in Cultured BEAS-2B Cells Treated with Metal Oxide Nanoparticles

  • Published : 2009.12.01

Abstract

Recent publications showed that metal nanoparticles which are made from $TiO_2,\;CeO_2,\;Al_2O_3,\;CuCl_2,\;AgNO_3$ and $ZnO_2$ induced oxidative stress and pro-inflammatory effects in cultured cells and the responses seemed to be common toxic pathway of metal nanoparticles to the ultimate toxicity in animals as well as cellular level. In this study, we compared the gene expression induced by two different types of metal oxide nanoparticles, titanium dioxide nanoparticles (TNP) and cerium dioxide nanoparticles (CNP) using microarray analysis. About 50 genes including interleukin 6, interleukin 1, platelet-derived growth factor $\beta$, and leukemia inhibitory factor were induced in cultured BEAS2B cells treated with TNP 40 ppm. When we compared the induction levels of genes in TNP-treated cells to those in CNP-treated cells, the induction levels were very correlated in various gene categories (r=0.645). This may suggest a possible common toxic mechanism of metal oxide nanoparticles.

Keywords

References

  1. Carlson, C., Hussain, S.M., Schrand, A.M., Braydich-Stolle, L.K., Hess, K.L., Jones, R.L. and Schlager, J.J. (2008). Unique cellular interaction of silver nanoparticies: sizedependent generation of reactive oxygen species. J. Phys. Chem. B, 112, 13608-13619 https://doi.org/10.1021/jp712087m
  2. Gao, F., Lu, Q. and Komarneni, S. (2006). Fast synthesis of cerium oxide nanoparticies and nanorods. J. Nanosci. Nanotechnol., 6, 3812-3819 https://doi.org/10.1166/jnn.2006.609
  3. Gurr, J.R., Wang, A.S., Chen, C.H. and Jan, K.Y (2005). Ultrafine titanium dioxide particies in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology, 213, 66-73 https://doi.org/10.1016/j.tox.2005.05.007
  4. Kang, S.J., Kim, B.M., Lee, YJ. and Chung, H.W. (2008). Titanium dioxide nanoparticies trigger p53-mediated damage response in peripheral blood lymphocytes. Environ. Mol. Mutagen., 49, 399-405 https://doi.org/10.1002/em.20399
  5. Karlsson, H.L., Cranholm, P, Gustafsson, J. and Moller, L. (2008). Copper oxide nanoparticies are highly toxic: a comparison between metal oxide nanoparticies and carbon nanotubes. Chem. Res. Toxicol., 9, 1726-1732
  6. Lin, W., Huang, Y, ZAhou, X. and Ma, Y (2006). Toxicity of cerium oxide nanoparticies in human lung cancer cells. Int. J. Toxicol., 25, 451-457 https://doi.org/10.1080/10915810600959543
  7. Park, E., Vi, J., Chung, K., Ryu, D., Choi, J. and Park, K. (2008a). Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol. Lett., 180, 222-229 https://doi.org/10.1016/j.toxlet.2008.06.869
  8. Park, E., Choi, J., Park, Y. and Park, K. (2008b). Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology, 245, 90-100 https://doi.org/10.1016/j.tox.2007.12.022
  9. Park, E., Yoon, J., Choi, K., Vi, J. and Park, K. (2009a). Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicology, 260, 37-46 https://doi.org/10.1016/j.tox.2009.03.005
  10. Park, E. and Park, K. (2009b). Oxidative stress and proinflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol. Lett., 184, 18-25 https://doi.org/10.1016/j.toxlet.2008.10.012
  11. Park, E., Cho, W, Jeong, J., Vi, J., Choi, K. and Park, K. (2009c). Pro-inflammatory and potential allergic responses resulting from B cell activation in mice treated with multiwalled carbon nanotubes by intratracheal instillation. Toxicology, 259, 113-121 https://doi.org/10.1016/j.tox.2009.02.009
  12. Rahman, Q., Lohani, M., Dopp, E., Pemsel, H., Jonas, L., Weiss, D.G. and Schiffmann, D. (2002). Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ. Health Perspect., 110, 797-800
  13. Rahman, M.F., Wang, J., Patterson, TA, Saini U.T., Robinson, B.L., Newport, G.D., Murdock, R.C., Schlager, J.J., Hussain, S.M. and Ali, S.F. (2009). Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol. Lett., 187, 15-21 https://doi.org/10.1016/j.toxlet.2009.01.020
  14. Reeves, J.F., Davies, S.J., Dodd, N.J.F. and Jha, AN. (2008). Hydroxyl radicals (*OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat. Res., 640, 113-122 https://doi.org/10.1016/j.mrfmmm.2007.12.010
  15. Sharma, V., Shukla, R.K., Saxena, N., Parmar, D., Das, M. and Dhawan, A (2009). DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol. Lett., 185, 211-218 https://doi.org/10.1016/j.toxlet.2009.01.008
  16. Walther, TC., Pickersgill, H.S., Cordes, V.C., Goldberg, M.W., Allen, TD., Mattaj, I.W and Fomerod, M. (2002). The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import. J. Cell. BioI., 158, 63-77 https://doi.org/10.1083/jcb.200202088
  17. Warheit, D.B., Borm, P.J., Hennes, C. and Lademann, J. (2007). Testing strateges to establish the safety of nanomaterials: conclusion of an ECETOC workshop. Inhal. Toxicol., 19, 631-643 https://doi.org/10.1080/08958370701353080
  18. Wittmaack, K. (2007). In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: particle number, surface area, or what? Environ. Health Perspect., 115, 187-194 https://doi.org/10.1289/ehp.9254