• Title/Summary/Keyword: Interleaved converter

Search Result 264, Processing Time 0.026 seconds

A Study on the Voltage Compensation Converter to decrease fuel consumption of RTGC (RTGC의 연료절감을 위한 전압 보상 컨버터에 관한 연구)

  • Bayasgalan, Bayasgalan;Ryu, Ji-Su;Han, Dong-Hwa;Lee, Young-Jin;Lee, Sang-Ho;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.280-282
    • /
    • 2011
  • This paper presents a development of voltage compensation dc/dc converter to decrease fuel consumption of RTGC system. We used 3-phase interleaved converter, which has the same structure as the commercially available three-phase inverter, is used. RTGC system is supplied the power from diesel-engine generator. According to power demand, engine speed is varying 20~60Hz, and voltage is varying 210Vac ~ 480Vac. When idle mode or low power operation dc/dc converter operates by constant output voltage control. The perpormance of converter is evaluated through several experiments with a real RTGC. Proposed system can cut down fuel consumption by 36% at idle mode operation.

  • PDF

Nonisolated Bidirectional ZVT DC-DC Converter for an Energy Storage System (에너지 저장 시스템을 위한 비절연 양방향 ZVT DC-DC 컨버터)

  • Han, Ji-tai;Lim, Chang-soon;Kim, Rae-young;Hyun, Dong-seok
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.50-51
    • /
    • 2012
  • The paper presents a non-isolated bidirectional DC-DC converter for use in renewable power generation, battery, electric vehicles (EV) and small scale DC-UPS systems. In the propose design, the conventional interleaved operation of two-inductor boost structure is modified to accommodate bidirectional operation, and zero-voltage-transition (ZVT) is applied, where both the switch and the rectifier diode achieve soft condition without increasing their voltage and current stresses. The proposed converter has the merits of simple circuitry, reduced size, low cost and high efficiency. The operation principle of the converter is analyzed and verified. Also, simulation results of the proposed bidirectional dc-dc converter is shown.

  • PDF

Design and verification of Bi-Directional Inverter and Converter using Zinc-Bromine Flow Battery (Zinc - Bromine 플로우 배터리를 이용한 양방향 인버터 및 DC-DC 컨버터 설계 및 실증)

  • Lee, SeungJun;Cho, Younghoon;Lim, Jong-ung;Choe, Gyu-ha
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.389-390
    • /
    • 2015
  • This paper proposes renewable energy system related with flow battery system which is divided into two system, converter and inverter. The Interleaved Boost Converter circuit was used for DC - DC Converter and Full-Bridge Inverter was used for Grid connected Inverter. This paper design each system and uses methods to operate converter and inverter in high efficiency.

  • PDF

A Parallel Hybrid Soft Switching Converter with Low Circulating Current Losses and a Low Current Ripple

  • Lin, Bor-Ren;Chen, Jia-Sheng
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1429-1437
    • /
    • 2015
  • A new parallel hybrid soft switching converter with low circulating current losses during the freewheeling state and a low output current ripple is presented in this paper. Two circuit modules are connected in parallel using the interleaved pulse-width modulation scheme to provide more power to the output load and to reduce the output current ripple. Each circuit module includes a three-level converter and a half-bridge converter sharing the same lagging-leg switches. A resonant capacitor is adopted on the primary side of the three-level converter to reduce the circulating current to zero in the freewheeling state. Thus, the high circulating current loss in conventional three-level converters is alleviated. A half-bridge converter is adopted to extend the ZVS range. Therefore, the lagging-leg switches can be turned on under zero voltage switching from light load to full load conditions. The secondary windings of the two converters are connected in series so that the rectified voltage is positive instead of zero during the freewheeling interval. Hence, the output inductance of the three-level converter can be reduced. The circuit configuration, operation principles and circuit characteristics are presented in detail. Experiments based on a 1920W prototype are provided to verify the effectiveness of the proposed converter.

High Step-up Interleaved CCM-ZVZCS Converters (고승압 인터리빙 CCM-ZVZCS 컨버터)

  • Park, Yo-Han;Choi, Se-Wan;Choi, Woo-Jin;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.114-121
    • /
    • 2011
  • This paper proposes a soft-switching interleaved boost converter which is suitable for high step-up and high power applications. Compared to the conventional boost converter the proposed converter can achieve approximately doubled voltage gain using the same duty cycle. The voltage ratings of the switch and diode are reduced to half, which result in the use of devices with lower $R_{DS(ON)}$ and on drop leading to reduced conduction losses. Also, voltage ratings of the passive components are reduced, and therefore the total energy volume is reduced to half. Further, the switch is turned on with ZVS in the CCM operation, and the diode is turned off with ZCS which results in negligible surge caused by diode reverse recovery leading to reduced switching losses. The validity of the proposed converter is proved through a 2kW prototype.

Analysis, Design and Implementation of a Soft Switching DC/DC Converter

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.20-30
    • /
    • 2013
  • This paper presents a soft switching DC/DC converter for high voltage application. The interleaved pulse-width modulation (PWM) scheme is used to reduce the ripple current at the output capacitor and the size of output inductors. Two converter cells are connected in series at the high voltage side to reduce the voltage stresses of the active switches. Thus, the voltage stress of each switch is clamped at one half of the input voltage. On the other hand, the output sides of two converter cells are connected in parallel to achieve the load current sharing and reduce the current stress of output inductors. In each converter cell, a half-bridge converter with the asymmetrical PWM scheme is adopted to control power switches and to regulate the output voltage at a desired voltage level. Based on the resonant behavior by the output capacitance of power switches and the transformer leakage inductance, active switches can be turned on at zero voltage switching (ZVS) during the transition interval. Thus, the switching losses of power MOSFETs are reduced. The current doubler rectifier is used at the secondary side to partially cancel ripple current. Therefore, the root-mean-square (rms) current at output capacitor is reduced. The proposed converter can be applied for high input voltage applications such as a three-phase 380V utility system. Finally, experiments based on a laboratory prototype with 960W (24V/40A) rated power are provided to demonstrate the performance of proposed converter.

Power Distribution Control Scheme for a Three-phase Interleaved DC/DC Converter in the Charging and Discharging Processes of a Battery Energy Storage System

  • Xie, Bing;Wang, Jianze;Jin, Yu;Ji, Yanchao;Ma, Chong
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1211-1222
    • /
    • 2018
  • This study presents a power distribution control scheme for a three-phase interleaved parallel DC/DC converter in a battery energy storage system. To extend battery life and increase the power equalization rate, a control method based on the nth order of the state of charge (SoC) is proposed for the charging and discharging processes. In the discharging process, the battery sets with high SoC deliver more power, whereas those with low SoC deliver less power. Therefore, the SoC between each battery set gradually decreases. However, in the two-stage charging process, the battery sets with high SoC absorb less power, and thus, a power correction algorithm is proposed to prevent the power of each particular battery set from exceeding its rated power. In the simulation performed with MATLAB/Simulink, results show that the proposed scheme can rapidly and effectively control the power distribution of the battery sets in the charging and discharging processes.

Analysis and Design of Coupled Inductors for Two-Phase Interleaved DC-DC Converters

  • Lee, Jong-Pil;Cha, Honnyong;Shin, Dongsul;Lee, Kyoung-Jun;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.339-348
    • /
    • 2013
  • Multiphase dc-dc converters are widely used in modern power electronics applications due to their advantages over single-phase converters. Such advantages include reduced current stress in both the switching devices and passive elements, reduced output current ripple, and so on. Although the output current ripple of a converter can be significantly reduced by virtue of the interleaving effect, the inductor current ripple cannot be reduced even with the interleaving PWM method. One way to solve this problem is to use a coupled inductor. However, care must be taken in designing the coupled inductor to maximize its performances. In this paper, a detailed analysis of a coupled inductor is conducted and the effect of a coupled inductor on current ripple reduction is investigated extensively. From this analysis, a UU core based coupled inductor structure is proposed to maximize the performance of the coupled inductor.

A Study on the output ripple reduction of Active-Clamp Forward Converter (액티브 클램프 포워드 컨버터의 출력 리플 저감에 관한 연구)

  • Jung, Jae-Yeop;Kim, Yong;Bae, Jin-Yong;Kwon, Soon-Do;Choi, Geun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.963_964
    • /
    • 2009
  • This paper presents an output ripple reduction of Active-Clamp Forward Converter, which is mainly composed of interleaving two active-clamping forward converters. By interleaving, Output ripple is reduced. The leakage inductance of the transformer or an additional resonant inductance is employed to achieve ZVS during the dead times. The duty cycles are not limited to be equal and within 50%. The complementary switching and the resulted interleaved output inductor currents diminish the current ripple in output capacitors. Accordingly, the smaller output chokes and capacitors lower the converter volume and increase the power density. Detailed analysis of this ouput reduction of Active-Clamp Forward Converter is described.

  • PDF

Selection of Coupling Factor for Minimum Inductor Current Ripple in Multi-winding Coupled Inductor Used in Bidirectional DC-DC Converters

  • Kang, Taewon;Suh, Yongsug
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.879-891
    • /
    • 2018
  • A bidirectional dc-dc converter is used in battery energy storage systems owing to the growing requirements of a charging and discharging mode of battery. The magnetic coupling of output or input inductors in parallel-connected multi modules of a bidirectional dc-dc converter is often utilized to reduce the peak-to-peak ripple size of the inductor current. This study proposes a novel design guideline to achieve minimal ripple size of the inductor current under bidirectional power flow. The newly proposed design guideline of optimized coupling factor is applicable to the buck and boost operation modes of a bidirectional dc-dc converter. Therefore, the coupling factor value of the coupled inductor does not have to be optimized separately for buck and boost operation modes. This new observation is explained using the theoretical model of coupled inductor and confirmed through simulation and experimental test.