• Title/Summary/Keyword: Interlayer Formation

Search Result 101, Processing Time 0.028 seconds

Via Formation in Dielectric Layers Made of Photosensitive BCB (감광성 BCB를 이용한 절연막층에서의 비아형성)

  • 주철원;임성훈;한병성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.5
    • /
    • pp.351-355
    • /
    • 2001
  • Via for achieving reliable fabrication of MCM(Multichip Module) substrate was formed on photosensitive BCB layer. The MCM substrate consists of photosensitive BCB(Benzocyclobutene) interlayer dielectric and copper conductors. In order to form the vias in the photosensitive BCB layer, the process of forming the BCB layer and its via forming plasma etch using C$_2$F$\_$6//O$_2$ gas were evaluated. The thickness of the BCB layer after hard bake was shrunk down to 40% of the original. The resolution of vias formed on the BCB was 15㎛ and the slope after develop was 85 degree. AES analysis was done on two vias, one is etched in C$_2$F$\_$6/O$_2$ gas and the other isnot etched. On the via etched in C$_2$F$\_$6//O$_2$, native C was detected and the amount of native C was reduced after Ar sputter. On the via not etched in C$_2$F$\_$6//O$_2$, organic C was detected. As a result of AES, BCB residue was not removed by Ar sputter, so plasma etch is necessary for achieving reliable vias.

  • PDF

Properties of SiOCH Thin Film Bonding Mode by BTMSM/O2 Flow Rates (BTMSM/O2 유량변화에 따른 SiOCH 박막 결합모드의 2차원 상관관계 특성)

  • Kim, Jong-Wook;Hwang, Chang-Su;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.354-361
    • /
    • 2008
  • The dielectric characteristics of low-k interlayer dielectric materials was fabricated by plasma enhanced chemical vapor deposition (PECVD). BTMSM precursor was evaporated and introduced with the flow rates from 16 sccm to 25 sccm by 1sccm step in the constant flow rate of 60 sccm $O_2$ in process chamber. Manufactured samples are analyzed components by measuring FT/IR absorption lines. Decomposition each Microscopic structures through two-dimensional correlation analysis about mechanisms for the formation of SiOCH in $SiOCH_3$, Si-O-Si and Si-$CH_3$ bonding group and analyzed correlation between the micro-structure of each group. It is a tendency that seems to be growing of Si-O-Ci(C) bonding group and narrowing of Si-O-$CH_3$ bonding group relative to the increasing flow-rate BTMSM. The order of changing sensitivity about changes of flow-rate in Si-O-Si(C) bonding group is cross link mode$(1050cm^{-1})$ $\rightarrow$ open link mode$(1100cm^{-1})\rightarrow$ cage link mode $(1140cm^{-1})$.

Study on Via hole formation in multi layer MCM-D substrate using photosensitive BCB (감광성 BCB를 사용한 다층 MCM-D 기판에서 비아홀 형성에 관한 연구)

  • 주철원;최효상;안용호;정동철;김정훈;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.99-102
    • /
    • 2000
  • Via for achieving reliable fabrication of MCM-D substrate was formed on the photosensitive BCB layer. MCM-D substrate consists of photosensitive BCB(Benzocyclobutene) interlayer dielectric and copper conductors. In order to form the vias in photosensitive BCB layer, the process of BCB and plasme etch using $C_2$F$_{6}$ gas were evaluated. The thickness of BCB after soft bake was shrunk down to 60% of the original. AES analysis was done on two vias, one is etched in $C_2$F$_{6}$ gas and the other is non etched. On via etched in $C_2$F$_{6}$, native C was detected and the amount of native C was reduced after Ar sputter. On via non etched in $C_2$F$_{6}$, organic C was detected and amount of organic C was reduced a little after Ar sputter. As a result of AES, BCB residue was not removed by Ar sputter, so plasma etch is necessary for achieving reliable via.ble via.

  • PDF

Oxidation-treated of Oxidized Carbons and its Electrochemical Performances for Electric Double Layer Capacitor (산화처리 탄소 및 이를 이용한 EDLC 특성)

  • Yang, Sun-Hye;Kim, Ick-Jun;Jeon, Min-Je;Moon, Seong-In;Kim, Hyun-Soo;An, Kye-Hyeok;Lee, Yun-Pyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.502-507
    • /
    • 2007
  • The oxidation treatment of several carbon materials with a sodium chlorate and 70 wt.% of nitric acid, combined with heat treatment, were attempted to achieve an electrochemical active material with a larger capacitance. Among pitch, needle coke, calcinated needle coke and natural graphite, the structure of needle coke and calacinated needle coke were changed to the graphite oxide structure with the expansion of the inter-layer. On the other hand, the calcinated needle coke after oxidation and heating at $200^{\circ}C$ has exhibited largest capacitance per weight and volume of 29.5 F/g and 24.5 F/ml at the two-electrode system in the potential range of 0 to 2.5 V. The electrochemical performance of the calcinated needle coke was discussed with the phenomenon of the electric field activation and the formation of new pores between the expanded inter-layer at first charge.

Performance of BDD Electrodes Prepared on Various Substrates for Wastewater Treatment (다양한 기판에 형성된 BDD 전극의 폐수처리 특성)

  • Kwon, Jong-Ik;You, Mi-Young;Kim, Seo-Han;Song, Pung-Keun
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.2
    • /
    • pp.53-57
    • /
    • 2019
  • Stability and activity of boron doped diamond (BDD) electrode are key factors for water treatment. In this study, BDD electrodes were prepared on various substrates such as Nb, Si, Ti, and $TiN_x/Ti$ by hot filament chemical vapor deposition (HFCVD) method. BDD/Ti film showed the delamination between BDD and Ti substrate due to the formation of TiC layer caused by diffusion of carbon. On the other hand, $BDD/TiN_x/Ti$ showed remarkably improved stability, compared to BDD/Ti. It was confirmed that $TiN_x$ intermediate layer act as barrier layer for diffusion of carbon. High potential window of 2.8 eV was maintained on the $BDD/TiN_x/Ti$ electrode and, better wastewater treatment capability and longer electrode working life than BDD/Nb, BDD/Si and BDD/Ti were obtained.

Joint Properties of Inconel 718 Additive Manufactured on Ti-6Al-4V by FGM method (Ti-6Al-4V 합금 기지 위에 FGM 방식으로 적층제조 된 Inconel 718의 접합 특성 분석)

  • Park, Chan Woong;Park, Jin Woong;Jung, Ki Chae;Lee, Se-Hwan;Kim, Sung-Hoon;Kim, Jeoung Han
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.417-422
    • /
    • 2021
  • In the present work, Inconel 718 alloy is additively manufactured on the Ti-6Al-4V alloy, and a functionally graded material is built between Inconel 718 and Ti-6Al-4V alloys. The vanadium interlayer is applied to prevent the formation of detrimental intermetallic compounds between Ti-6Al-4V and Inconel 718 by direct joining. The additive manufacturing of Inconel 718 alloy is performed by changing the laser power and scan speed. The microstructures of the joint interface are characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and micro X-ray diffraction. Additive manufacturing is successfully performed by changing the energy input. The micro Vickers hardness of the additive manufactured Inconel 718 dramatically increased owing to the presence of the Cr-oxide phase, which is formed by the difference in energy input.

In-situ formation of co particles encapsulated by graphene layers

  • Minjeong Lee;Gyutae Kim;Gyu Hyun Jeong;Aram Yoon;Zonghoon Lee;Gyeong Hee Ryu
    • Applied Microscopy
    • /
    • v.52
    • /
    • pp.7.1-7.6
    • /
    • 2022
  • The process of encapsulating cobalt nanoparticles using a graphene layer is mainly direct pyrolysis. The encapsulation structure of hybrids prepared in this way improves the catalyst stability, which greatly reduces the leaching of non-metals and prevents metal nanoparticles from growing beyond a certain size. In this study, cobalt particles surrounded by graphene layers were formed by increasing the temperature in a transmission electron microscope, and they were analyzed using scanning transmission electron microscopy (STEM). Synthesized cobalt hydroxide nanosheets were used to obtain cobalt particles using an in-situ heating holder inside a TEM column. The cobalt nanoparticles are surrounded by layers of graphene, and the number of layers increases as the temperature increases. The interlayer spacing of the graphene layers was also investigated using atomic imaging. The success achieved in the encapsulation of metallic nanoparticles in graphene layers paves the way for the design of highly active and reusable heterogeneous catalysts for more challenging molecules.

Characteristics of Hillock Formation in the Al-1%Si Film by the Effect of Ion Implantation and Substrate Temperature (이온 주입과 기판 온도 효과에 의한 Al-1%Si 박막의 Hillock 형성 특성)

  • Choi, Chang-Auk;Lee, Yong-Bong;Kim, Jeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.8-13
    • /
    • 2014
  • As packing density in integrated circuits increases, multilevel metallization process has been widely used. But hillock formed in the bottom layers of aluminum are well known to make interlayer short in multilevel metallization. In this study, the effects of ion implantation to the metal film and deposition temperature on the hillock formation were investigated. The Al-1%Si thin film of $1{\mu}m$ thickness was DC sputtered with substrate ($SiO_2/Si$) temperature of $20^{\circ}C$, $200^{\circ}C$, and $400^{\circ}C$, respectively. Ar ions ($1{\times}10^{15}cm^{-2}$: 150 keV) and B ions ($1{\times}10^{15}cm^{-2}$, 30 keV, 150 keV) were implanted to the Al-Si thin film. The deposited films were evaluated by SEM, surface profiler and resistance measuring system. As a results, Ar implanting to Al-Si film is very effective to reduce hillock size in the metal deposition temperature below than $200^{\circ}C$, and B implanting to an Al-Si film is effective to reduce hillock density in the high temperature deposition conditions around $400^{\circ}C$. Line width less than $3{\mu}m$ was free of hillock after alloying.

Mineral Chemistry and Stable Isotope Composition of Sericite from the Sangdong Sericite Mine in the Kimhae Area (김해지역 상동광상산 견운모의 광물화학 및 안전동위원소 조성)

  • Kim, Jong Dae;Moon, Hi-Soo;Jin, Sheng-Jin;Kim, In Joon
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.275-282
    • /
    • 1992
  • Mineral chemistry and stable isotope compositions of sericites from the Sangdong mine in the Kimhae area, Kyungsangnamdo, were studied. The Sangdong sericite deposit occurs in rhyolitic tuff of late Cretaceous age and considers to have been fonned by the hydrothennal alteration. The sericites are classified as $2M_1$ polytype and are characterized by less celadonite substitution indicating muscovite-phengite series. Their compositions are very close to that of the ideal muscovite but net layer charge ranges 1.71~1.91 which is less than 2 per formula unit of ideal muscovite. Predominant interlayer cation is K and K/(K+Na) ratio ranges 0.91 and 0.93. ${\delta}^{18}O$ values of sericites and quartz separated from the ore range 7.70~9.07 and 8.20~10.87‰, respectively. The formation temperature of sericite can be estimated as $315{\sim}340^{\circ}C$( based on ${\delta}^{18}O$ value of sericite and ${\delta}D$ value of of Cretaceous meteoric water. Their formation temperature discrepancy between coexisting sericite and quartz indicates that they are in isotopically inequilibrium. Two types of quartz, coarse grained phenocrysts and micrcrystalline aggregates are observed and the former must have been formed during volcanic eruption and remained isotopically unexchanged during hydrothermal alteration period. ${\delta}^{14}S$ values of pyrites range 1.9~4.5‰ which is within a range of volcanogenic sulfur, indicating magmatic source.

  • PDF

Mineralogical Properties and Paragenesis of H-smectite (H-스멕타이트의 광물학적 특성과 생성관계)

  • Noh, Jin-Hwan;Hong, Jin-Sung
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.377-393
    • /
    • 2010
  • Pumiceous tuffs occurring in the Beomgockri Group are examined applied-mineralogical characteristics and their controling factors to evaluate their potentials as the adsorption-functional mineral resources. The pumiceous tuffs are diagenetically altered to low-grade zeolitcs and bentonites in the Janggi area. Compositional specialty due to the presence of pumice fragments induces the altered tuffs to exhibit the characteristic adsorption property combined with cation exchange capacity, specific surface area, and acidic pH. Unusual lower pH in the adsorption-functional mineral substances is turned out to be originated from the presence of H-smectite having $H^+$ in the interlayer site of the sheet structure. On account of disordered crystallinity resulting from the exchanged $H^+$ in the interlayer site, the smectite commonly forms crenulated edges in the planar crystal form and exhibits characteristic X-ray diffraction patterns showing comparatively lower intensities of basal spacings including (001) peak than conventional Ca-smectite. Based on the interpretation of paragenetic relations and precursor of the H-smectite, a genetic model of the peculiar clay mineral was proposed. The smectite formation may be facilitated resulting from the precipitation of opal-CT at decreasing pH condition caused by the release of H+ during diagenetic alteration of pumice fragments. Because of the acidic smectite, the low-grade mineral resources from the Beomgockri Group may be applicable to the adsorption industry as the raw materials of acid clays and bed-soil.