• Title/Summary/Keyword: Interlaminar

Search Result 271, Processing Time 0.029 seconds

Mixed Mode Interlaminar Fracture Behaviors of Carbon Fabric/Epoxy Composites (탄소섬유직물/에폭시 복합재의 혼합모우드 층간파괴 거동)

  • Yoon, Sung-Ho;Heo, Kwang-Soo;Oh, Jin-Oh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.58-65
    • /
    • 2007
  • Mixed mode interlaminar fracture behaviors of carbon fabric/epoxy composites were investigated through MMF (Mixed Mode Flexural) test by varying mixed mode ratio ranging from 20% to 90%. Mixed mode interlaminar fracture criteria based on NL point and 5% offset point were also suggested in order to predict mixed mode interlaminar fracture behaviors. Fracture surfaces and crack propagating behaviors were examined through a travelling scope and a scanning electron microscope. According to the results, mixed mode interlaminar fracture behaviors can be predicted by mixed mode interlaminar fracture criterion with m=1.5 and n=0.5 on the basis of NL point or mixed mode interlaminar fracture criterion with m=2 and n=3 on the basis of 5% offset point. Fracture surfaces and crack propagating behaviors are sensitive to mixed mode ratios. MMF test can be successfully applicable in evaluating mixed mode interlaminar fracture toughness of carbon fabric/epoxy composites.

Investigation on interlaminar shear stresses in laminated composite beam under thermal and mechanical loading

  • Murugesan, Nagaraj;Rajamohan, Vasudevan
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.583-601
    • /
    • 2015
  • In the present study, the combined effects of thermal and mechanical loadings on the interlaminar shear stresses of both moderately thin and thick composite laminated beams are numerically analyzed. The finite element modelling of laminated composite beams and analysis of interlaminar stresses are performed using the commercially available software package MSC NASTRAN/PATRAN. The validity of the finite element analysis (FEA) is demonstrated by comparing the experimental test results obtained due to mechanical loadings under the influence of thermal environment with those derived using the present FEA. Various parametric studies are also performed to investigate the effect of thermal loading on interlaminar stresses generated in symmetric, anti-symmetric, asymmetric, unidirectional, cross-ply, and balanced composite laminated beams of different stacking sequences with identical mechanical loadings and various boundary conditions. It is shown that the elevated thermal environment lead to higher interlaminar shear stresses varying with the stacking sequence, length to thickness ratio, ply orientations under identical mechanical loading and boundary conditions of the composite laminated beams. It is realized that the magnitude of the interlaminar stresses along xz plane is always much higher than those of along yz plane irrespective of the ply-orientation, length to thickness ratios and boundary conditions of the composite laminated beams. It is also observed that the effect of thermal environment on the interlaminar shear stresses in carbon-epoxy fiber reinforced composite laminated beams are increasing in the order of symmetric cross-ply laminate, unidirectional laminate, asymmetric cross-ply laminate and anti-symmetric laminate. The interlaminar shear stresses are higher in thinner composite laminated beams compared to that in thicker composite laminated beams under all environmental temperatures irrespective of the laminate stacking sequence, ply-orientation and boundary conditions.

Flexural properties, interlaminar shear strength and morphology of phenolic matrix composites reinforced with xGnP-coated carbon fibers

  • Park, Jong Kyoo;Lee, Jae Yeol;Drzal, Lawrence T.;Cho, Donghwan
    • Carbon letters
    • /
    • v.17 no.1
    • /
    • pp.33-38
    • /
    • 2016
  • In the present study, exfoliated graphite nanoplatelets (xGnP) with different particle sizes were coated onto polyacrylonitrile-based carbon fibers by a direct coating method. The flexural properties, interlaminar shear strength, and the morphology of the xGnP-coated carbon fiber/phenolic matrix composites were investigated in terms of their longitudinal flexural strength and modulus, interlaminar shear strength, and by optical and scanning electron microscopic observations. The results were compared with a phenolic matrix composite counterpart prepared without xGnP. The flexural properties and interlaminar shear strength of the xGnP-coated carbon fiber/phenolic matrix composites were found to be higher than those of the uncoated composite. The flexural and interlaminar shear strengths were affected by the particle size of the xGnP, while the particle size had no significant effect on the flexural modulus. It seems that the interfacial contacts between the xGnP-coated carbon fibers and the phenolic matrix play a role in enhancing the flexural strength as well as the interlaminar shear strength of the composites.

Experimental Evaluation of Fatigue Behavior and Interlaminar Phase in the Lightweight Piezoelectric Ceramic Composite Actuator Using the Ultrasonic C-scan Inspection (초음파 C-스캔 탐상을 이용한 경량 압전세라믹 복합재료 작동기의 피로거동과 계면변화의 관계 연구)

  • Kim Cheol-Woong;Nam In-Chang;Yoon Kwang-Joon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1332-1336
    • /
    • 2005
  • It could make the LIghtweight Piezoelectric Composite Actuator (LIPCA) damageable by the cyclic large deformation. If the progressive microvoid coalescence of LIPCA interlaminar took place, the decrease of the stiffness and the weakness of stress transmission and fiber bridging effect would make the fatigue characteristics worse suddenly. Therefore, it is required to study the variation of fatigue behavior and interlaminar condition in LIPCA under resonant frequencies. These studies such as the changeable fatigue phase and interlaminar behavior of LIPCA affected by the resonant frequencies should be carried out due to the strong anisotropy of CFRP layer. Hence, these studies are as follows. 1) The residual stresses distribution of interlaminar in LIPCA using the Classical Lamination Theory (CLT). 2) Comparative analysis of interlaminar behavior for the intact LIPCA versus LIPCA containing an artificial delamination during resonant frequency.

  • PDF

Prediction of Progressive Interlaminar Fracture in Curved Composite Laminates Under Mode I Loading (모드 I 하중하에서 곡률이 있는 복합재 적층판의 점진적 층간파손 예측)

  • Kang, Seunggu;Shin, Kwangbok;Lee, HyunSoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.930-932
    • /
    • 2017
  • In this paper, prediction of progressive interlaminar fracture in curved composite laminates under mode I loading was described. The prediction of progressive interlaminar fracture in curved composite laminates was conducted using cohesive zone model(CZM) in ABAQUS V6.13. Interlaminar fracture toughness used as input parameters in CZM was obtained through mode I, mode II and mixed mode I/II tests. The behaviors of progressive interlaminar fracture for curved composite laminates showed a good agreement between experimental and numerical results.

  • PDF

Optimization of interlaminar strength with uncertainty of material properties (물성치의 불확실성을 고려한 층간강도의 최적화)

  • 조맹효;이승윤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.70-73
    • /
    • 2001
  • The layup optimization by genetic algorithm (GA) for the interlaminar strength of laminated composites with free edge is presented. For the calculation of interlaminar stresses of composite laminates with free edges, extended Kantorovich method is applied. In the formulation of GA, repair strategy is adopted for the satisfaction of given constraints. In order to consider the bounded uncertainty of material properties, convex modeling is used. Results of GA optimization with scattered properties are compared with those of optimization with nominal properties. The GA combined with convex modeling can work as a practical tool for maximum interlaminar strength design of laminated composite structures, since uncertainties are always encountered in composite materials and the optimal results can be changed.

  • PDF

Interlaminar stress behavior of laminated composite plates under Low velocity Impact (저속충격을 받는 적층복합재료 평판의 미시구조를 고려한 interlaminar stress 거동 연구)

  • Ji, Kuk-Hyun;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.249-252
    • /
    • 2005
  • Prediction of damage caused by low-velocity impact in laminated composite plate is an important problem faced by designers using composites. Not only the inplane stresses but also the interlaminar normal and shear stresses playa role in estimating the damage caused. The work reported here is an effort in getting better predictions of damage in composite plate using DNS approach. In the DNS model, we discretize the composite plates through separate modeling of fiber and matrix for the local microscopic analysis. Through comparison with the homogenized model. In the view of microscopic mechanics with DNS model, interlaminar stress behaviors in the inside of composite materials is investigated and compared with the results of the homogenized model which has been used in the conventional approach of impact analysis.

  • PDF

Posterior Atalntoaxial Fusion with C1 Lateral Mass Screw and C2 Pedicle Screw Supplemented with Miniplate Fixation for Interlaminar Fusion : A Preliminary Report

  • Yoon, Sang-Mok;Baek, Jin-Wook;Kim, Dae-Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.2
    • /
    • pp.120-125
    • /
    • 2012
  • Objective : To investigate the feasibility of C1 lateral mass screw and C2 pedicle screw with polyaxial screw and rod system supplemented with miniplate for interlaminar fusion to treat various atlantoaxial instabilities. Methods : After posterior atlantoaxial fixation with lateral mass screw in the atlas and pedicle screw in the axis, we used 2 miniplates to fixate interlaminar iliac bone graft instead of sublaminar wiring. We performed this procedure in thirteen patients who had atlantoaxial instabilities and retrospectively evaluated the bone fusion rate and complications. Results : By using this method, we have achieved excellent bone fusion comparing with the result of other methods without any complications related to this procedure. Conclusion : C1 lateral mass screw and C2 pedicle screw with polyaxial screw and rod system supplemented with miniplate for interlaminar fusion may be an efficient alternative method to treat various atlantoaxial instabilities.

A Study on Reduction of Thermal Interlaminar Forces of Fiber-Reinforced Laminate Composites Using Volume Fraction Gradient (체적비구배를 이용한 섬유강화 적층 복합재의 열하중에 의한 층건력 감소에 대한 연구)

  • Choe, Deok-Gi;Sin, Jong-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1115-1122
    • /
    • 2000
  • This paper addresses an application of a fiber volume fraction gradients to reduce the interlaminar forces of fiber reinforced composites subjected to thermal loadings. The degree of the reduction in the interlaminar forces may be expressed by introducing a new parameter, so called, the interlaminar force parameter. Several cases of stacking sequences and models for fiber volume fraction gradients prove the availability of the new parameter which is defined in this study.

Interlaminar Normal Stress Effects in Cylindrical Tubular Specimens of Graphite/Epoxy [±45]s Composites

  • An, Deuk Man
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.406-409
    • /
    • 2017
  • The thin-walled cylindrical tubes are frequently used for the evaluation of fatigue property of composites. But the curvature of the tubular specimen induces interlaminar normal stress which may affect the fatigue property. In this paper interlaminar normal stress effect on the fatigue behaviour of thin-walled graphite/epoxy tubes $[{\pm}45]_s$ composites was studied experimentally. It was concluded that the interlaminar normal stress induced by the curvature of the cylinder has no discernible effect on the fatigue life. But excessive internal pressure can produce the stiffness increase and this affects the fatigue life of the cylindrical tubular composite.