• Title/Summary/Keyword: Interior noise prediction

Search Result 48, Processing Time 0.026 seconds

Noise Prediction of Train Using Ray Tracing Method and Statistical Energy Analysis (음선추적법과 통계적 에너지 분석법을 이용한 철도차량 실내 소음 해석)

  • Park, Hee-Jun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.942-946
    • /
    • 2010
  • As the major sources of interior noise of train at running condition are the wheel/rail contact noise, the traction motor's noise and the driving gear's noise and these noise sources are transmitted through the car body, the noises of HVAC and air duct can be ignored. But the interior noise of train at standstill condition is decided by HVAC's noise and noise from the diffuser through the air duct. the interior noise prediction of train at standstill condition should be performed considering the shape of air duct, the air velocity and noise reduction property inside the air duct. But it is hard to estimate the interior noise level by the numerical method. Therefore train maker predict the interior noise level using The commercial noise prediction program. This paper introduce the noise prediction method of the train at standstill condition using the commercial program appling the ray tracing method and statistical energy analysis.

  • PDF

Hyundai Motor's 4th NVH open BMT - Wind noise prediction on the HSM (Hyundai simplified model) using Ansys Fluent and LMS Virtual.Lab

  • Hallez, Raphael;Lee, Sang Yeop;Khondge, Ashok;Lee, Jeongwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.562-562
    • /
    • 2014
  • Assessment of aerodynamic noise is becoming increasingly important for automotive manufacturers. Flow passing a vehicle may indeed lead to high interior noise level and affect cabin comfort. Interior noise results from various mechanisms including aerodynamic fluctuations of the disturbed flow around the side mirror or pillar, hydrodynamic and acoustic loading of the car panels and windows, vibration of these panels and acoustic radiation inside the vehicle. Objective of the present study is to capture these important mechanisms in a simulation model and demonstrate the ability of the combined simulation tools Fluent / Virtual.Lab to provide accurate aerodynamic and interior noise prediction results. Previous study focused on the noise generated by the turbulence around the A-pillar structure of the HSM (Hyundai simplified model). The present study also includes the effect of the side-mirror and rain-gutter structures. Complete modeling process is presented including details on the unsteady CFD simulation and the vibro-acoustic model with absorption materials. Guidelines and best practices for building the simulation model are also discussed.

  • PDF

Prediction vehicle interior noise using Acoustic Transfer Function (Acoustic Transfer Function을 이용한 실차 실내 소음 예측)

  • Koh, Sung-Gyoo;Shin, Han-Seung;Cho, Whan-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.534-537
    • /
    • 2011
  • This Paper present prediction Vehicle Interior Noise using ATF(Acoustic Transfer Function) and engine radiated sound power. This is useful tool to qualifying the effectiveness of Air-borne noise Path. Furthermore This method provide acoustic package performance of the vehicle and able to prepare frequency band to same segment or benchmarking vehicle.

  • PDF

Prediction of Interior Noise by Excitation Force of Powertrain Based on Hybrid Transfer Path Analysis (Hybrid TPA를 이용한 파워트레인 구조기인 실내소음 예측)

  • Kim, Sung-Jong;Lee, Sang-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.117-124
    • /
    • 2008
  • In early design stage, the simulation of interior noise is useful for the enhancement of the noise, vibration and harshness (NVH) performance in a vehicle. The traditional transfer path analysis (TPA) technology cannot simulate the interior noise since it uses the experimental method. In order to solve this problem, in this paper, the hybrid TPA is developed as the novel approach. The hybrid TPA uses the simulated excitation force as the input force, which excites the flexible body of a car at the mount point, while the traditional TPA uses the measured force. This simulated force is obtained by numerical analysis for the FE (finite element) model of a powertrain. The interior noise is predicted by multiplying the simulated force by the vibro-acoustic transfer function (VATF) of the vehicle. The VATF is the acoustic response in the compartment of a car to the input force at the mount point of the powertrain in the flexible car body. The trend of the predicted interior noise based on the hybrid TPA very well corresponds to the measured interior noise, although there is some difference due to not only the experimental error and the simulation error but also the effect of the air-borne path.

Reducing the Interior Noise of the Korean High-speed Train Using Geometric Acoustic Method (기하음향 기법을 적용한 한국형 고속철도 실내소음 저감 방안)

  • Kim, Kwan-Ju;Park, Jin-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.431-436
    • /
    • 2002
  • The interior sound pressure level of the Korean high-speed train(KHST) is predicted by geometrical acoustic method. For the Purpose of assuring the prediction of Interior noise of KHST by the geometrical acoustic scheme, calculated sound level values of the Korean train express(KTX) by Identical geometrical method are compared with measured values of KTX prototype vehicle by experiment. Contribution of individual sound source of KHST vehicle Into the interior response positions is calculated and sound sources are classified in influential order. Hence, it is reasonable approach to reduce sound power of most contributing noise source first. Sensitivity of the interior response position's sound pressure level (SPL) with respect to train wall sections' transmission loss are carried on and acoustically sensitive spot is identified, for example window area for passenger cabin case. Those contribution and sensitivity analysis results are suggested to design quieter train efficiently.

The prediction of train interior noise with Statistical Energy Analysis (통계적 에너지 해석법을 이용한 전동차의 실내소음 분석)

  • Lee, Seoung-Woo;Kim, Jae-Chul;Lee, Dong-Hoon;Choo, Don-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1413-1419
    • /
    • 2008
  • As the improvements of service quality is becoming an important issue the, interior noise level of a train is an important factor of comfortable ride. To reduce the interior noise level, noise sources of the train need to be removed. However, in case with a structure of large scale and multiple noise sources, an estimation of influences of major noise sources, with indentification of its traveling paths needs to be performed. In current state, to improve the interior noise reduction, consideration of sound transmission loss of the train body prior to manufacturing is usually performed. In this study, the sound transmission loss of the train body of new model train of seoul metro's line no.2 under test opeation is measured and modeling of the train body is performed. And train interior noise is predicted using the measured values.

  • PDF

A Study of Response Characteristics for the Interior Impulse Noise based on Interpreted Models (해석 모델 기반의 실내 충격소음 응답특성에 관한 연구)

  • Song, Kee-Hyeok;Chung, Sung-Hak
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.22-28
    • /
    • 2014
  • This study is compare to model-based analysis and experimental data of the response characteristic of interior impulse noise. Interior impulse noise and the pressure response characteristics of the building structure on its analysis are presented the impulse pressure acting on the rear wall 90 N-sec. The force acting on the wall $CFD^{{+}{+}}$ which are compared measurement and simulation analysis. Results of simulation and measurement data were shown. In this study, a high dimension of the degree of virtual space in the numerical space of the lesser degree in order to calculate folding method was applied. The results of this study contribute safety evaluation and model development for the interior impulse noise that affects the basic data for the interior impulse noise model validate for the physical quantity prediction.

Excitation Force Analysis of a Powertrain Based on CAE Technology (CAE를 이용한 파워트레인의 가진력 해석)

  • Kim, Sung-Jong;Lee, Sang-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.107-116
    • /
    • 2008
  • The excitation force of a powertrain is one of major sources for the interior noise of a vehicle. This paper presents a novel approach to predict the interior noise caused by the vibration of the power rain by using the hybrid TPA (transfer path analysis) method. Although the traditional transfer path analysis (TPA) is useful for the identification of powertrain noise sources, it is difficult to modify the structure of a powertrain by using the experimental method for the reduction of vibration and noise. In order to solve this problem, the vibration of the power rain in a vehicle is numerically analyzed by using the finite element method (FEM). The vibration of the other parts in a vehicle is investigated by using the experimental method based on vibrato-acoustic transfer function (VATF) analysis. These two methods are combined for the prediction of interior noise caused by a power rain. Throughout this research, two papers are presented. This paper presents a simulation of the excitation force of the power rain exciting the vehicle body based on numerical simulation. The other paper presents a prediction of interior noise based on the hybrid TPA, which uses the VATF of the car body and the excitation force predicted in this paper.

Interior noise prediction of the Korean high speed train using sound source contribution analysis and sensitivity analysis of wall′s transmission loss (소음원 기여도 해석 및 벽면 투과손실에 대한 민감도 해석에 의한 한국형 고속철도의 실내소음 예측)

  • 김관주;박진규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1093-1098
    • /
    • 2001
  • The interior sound pressure level of the Korean high speed train is predicted using ray acoustic method. The motor car, motorized car and passenger cabin are investigated under the environment of passing open countryside and inside tunnel Calculated sound levels of KHST are compared with the those of KTX prototype which vehicle shows similar acoustic behavior with KHST for the purpose of assuring the calculated data. In order to reduce the calculated SPL in systematic way, contribution analysis of sound sources and sensitivity analysis of concerning wall's transmission loss on the SPL of the designated receiving points are carried out. Finally, practical design suggestions are proposed.

  • PDF

Analysis of Interior Noise Reduction in High Speed Trains by Filling up with Form (바닥 구조물의 폼재 충전을 통한 고속철도 차량의 실내 소음 저감 연구)

  • Kim, Tae-Min;Kim, Jeung-Tae;Kim, Jung-Soo;Kim, Seock-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.663-669
    • /
    • 2011
  • Since railway vehicle's improvements on speed and weight has caused interior noise, the passenger's convenience fell dramatically. Therefore many on-going researches are dedicated to reduce interior noise. In this study the analytical prediction of interior noise reduction has done through filling up the empty space using form and to modify the floor structure, which contributes highly with interior noises. Using Statistical Energy Analysis(SEA), the interior noise of the vehicles without the form filling on the floor structure and the vehicles with form filling and also a modified structure has been predicted. The selected percentage of form filling was 0, 50, 100% and through this research the analysis of noise reduction by form filling has been made. When floor structure has been filled with form, approximately 2 dB of noise reduction was observed and the difference of noise reduction level with 50 and 100% form filling was predicted to be very little. Through this study, the expectation of interior noise reduction in high speed trains is considered high.

  • PDF