• 제목/요약/키워드: Intergranular breakdown

검색결과 8건 처리시간 0.023초

$BaTiO_3$ 세라믹스의 절연파괴거동에 미치는 결정립 크기와 시편두께의 영향 (Grain Size and Thickness Effects of Electrical Breakdown Behavior of $BaTiO_3$ Ceramics)

  • 조경호;남효덕;박철우;이희영
    • 한국세라믹학회지
    • /
    • 제33권11호
    • /
    • pp.1217-1222
    • /
    • 1996
  • Undoped barium titanate ceramic samples with high density were produced by using both high purity hydro-thermally synthesized and oxalate-derived powders. Sintering temperature was varied in the temperature range 128$0^{\circ}C$-140$0^{\circ}C$ to control the average grain sizes of the samples. Electrical breakdown test was performed at two different temperature with 3$0^{\circ}C$(below Tc) and 15$0^{\circ}C$ (above Tc) for samples immersed in silicon oil bath using 60kV dc power supply. From the experimental results at below and above Curie temperature the grain size and thickness dependence of electrical breakdown strength for BaTiO3 ceramics was presented and breakdown behavior was also studied.

  • PDF

Microstructure, Electrical Properties, and Accelerated Aging Behavior of Er-Added ZPCC-YE Varistors

  • Nahm, Choon-Woo;Park, Jong-Hyuk
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권5호
    • /
    • pp.216-221
    • /
    • 2010
  • The microstructure, electrical properties, and DC-accelerated aging behavior of the Zn-Pr-Co-Cr-Y-Er (ZPCC-YE) varistors were investigated for different amounts of erbium oxide ($Er_2O_3$). The microstructure consisted of zinc oxide grain and an intergranular layer ($Pr_6O_{11}$, $Y_2O_3$, and $Er_2O_3$-rich phase) as a secondary phase. The increase of $Er_2O_3$ amount decreased the average grain size and increased the sintered density. As the $Er_2O_3$ amount increased, the breakdown field increased from 5094 V/cm to 6966 V/cm and the nonlinear coefficient increased from 27.8 to 45.1. The ZPCC-YE varistors added with 0.5 to 1.0 mol% $Er_2O_3$ are appropriate for high voltage, with high nonlinearity and stability against DC-accelerated aging stress.

METALLIC INTERFACES IN HARSH CHEMO-MECHANICAL ENVIRONMENTS

  • Yildiz, Bilge;Nikiforova, Anna;Yip, Sidney
    • Nuclear Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.21-38
    • /
    • 2009
  • The use of multi scale modeling concepts and simulation techniques to study the destabilization of an ultrathin layer of oxide interface between a metal substrate and the surrounding environment is considered. Of particular interest are chemo-mechanical behavior of this interface in the context of a molecular-level description of stress corrosion cracking. Motivated by our previous molecular dynamics simulations of unit processes in materials strength and toughness, we examine the challenges of dealing with chemical reactivity on an equal footing with mechanical deformation, (a) understanding electron transfer processes using first-principles methods, (b) modeling cation transport and associated charged defect migration kinetics, and (c) simulation of pit nucleation and intergranular deformation to initiate the breakdown of the oxide interlayer. These problems illustrate a level of multi-scale complexity that would be practically impossible to attack by other means; they also point to a perspective framework that could guide future research in the broad computational science community.

The effect of cooling rate on electrical properties of ZnO varistor for Fire Alarm Circuit

  • Lee, Duck-Chool;Kim, Yong-Hyuk;Chu, Soon-Nam
    • 한국화재소방학회논문지
    • /
    • 제10권4호
    • /
    • pp.3-12
    • /
    • 1996
  • 본 연구에서는 화재 감지 회로 등에 사용되는 ZnO 바리스터의 제조과정중 냉각 속도가 전기적 특성에 미치는 영향에 대하여 조사한 것이다. 냉각 속도의 변화에 따른 시편의 미세구조, 전압-전류 특성, 복합임피던스 측정을 하였다. 냉각 속도 $200^{\circ}$/h에서 비오옴계수나 바리스터 동작 전압의 최대치를 나타내었다. 이것은 냉각과정 중 형성된 결정입계에 성질에 의존됨을 알았다. 복합임피던스는 100Hz-13MHz의 주파수 범위에서 측정하였으며, 반원의 특성을 검토한 결과 결정립이나 결정입계의 저항이 냉각 속도에 크게 의존되고 있음을 확인하였다.

  • PDF

Microstructure and Varistor Properties of ZPCCAE Ceramics with Erbium

  • Nahm, Choon-Woo;Heo, Jae-Seok;Lee, Geun-Hyung
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권4호
    • /
    • pp.213-216
    • /
    • 2014
  • The microstructure and varistor properties of ZPCCAE ($ZnO-Pr_6O_{11}-CoO-Cr_2O_3-Al_2O_3-Er_2O_3$) ceramics were investigated with different erbium amounts. Analysis of the microstructure indicated that the ceramics consisted of ZnO grains as a bulk phase, and intergranular layers (mixture of $Pr_6O_{11}$ and $Er_2O_3$) as a minor secondary phase. With the increase of the doped erbium amount, the densities of sintered pellets increased from 5.63 to $5.82g/cm^3$, and the average grain size decreased from 9.0 to $5.7{\mu}m$. The increase of the doped erbium amount increased the breakdown field from 2,649 to 5,074 V/cm, and the nonlinear coefficient from 27.6 to 39.1. It was found that in the range of 0.25 to 0.5 mol%, the doped erbium had little effect on the microstructure and electrical properties.

Poling 강도 변화에 따르는 PZT 세라믹스의 강도와 균열성장 의존성 (Dependence of Strength and Crack Growth of PZT Ceramics on Poling Strength)

  • 이홍림;권종오;한봉석
    • 한국세라믹학회지
    • /
    • 제34권8호
    • /
    • pp.877-885
    • /
    • 1997
  • The dependence of strength, crack growth, fracture mode and degree of domain rearrangement of PZT ceramics on poling strength were studied. The PZT [(Pb0.94Sr0.06)(Zr0.46Ti0.54)O3+Nb(trace)] specimens were poled at 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 kv/mm, and the strength of the specimens was measured by 3 point flexure system. The bending strength of the specimen decreased in different modes according to the bending directions; xz, zx and yz plane direction with x axis of the poling direction in Cartesian coordinate system. The strength differences between the directions increased as the poling strength increased. The fracture mode transferred to intergranular fracture mode from transgranular one as the poling strength increased. The mechanical breakdown occurred when the poling strength higher than 3 kV/mm was applied to the specimen. It was observed that the crack length increased in the normal direction to the poling direction, however, decreased in the parallel direction to the poling direction when the poled PZT specimen was indented by the Vickers indenter. However, the crack produced by indentation continuously was continuously increased little by little after indentation on the specimen. The domain rearrangement occurred as the poling strength increased and the domains were rearranged more effectively when the electric field was continuously increased little by little.

  • PDF

Health Monitoring of a Composite Actuator with a PZT Ceramic during Electromechanical Fatigue Loading

  • Woo, Sung-Choong;Goo, Nam-Seo
    • 비파괴검사학회지
    • /
    • 제27권6호
    • /
    • pp.541-549
    • /
    • 2007
  • This work describes an investigation into the feasibility of using an acoustic emission (AE) technique to evaluate the integrity of a composite actuator with a PZT ceramic under electromechanical cyclic loading. AE characteristics have been analyzed in terms of the behavior of the AE count rate and signal waveform in association with the performance degradation of the composite actuator during the cyclic tests. The results showed that the fatigue cracking of the composite actuator with a PZT ceramic occurred only in the PZT ceramic layer, and that the performance degradation caused by the fatigue damage varied immensely depending on the existence of a protecting composite bottom layer. We confirmed the correlations between the fatigue damage mechanisms and AE signal types for the actuators that exhibited multiple modes of fatigue damage; transgranular micro damage, intergranular fatigue cracking, and breakdown by a short circuiting were related to a burst type signal showing a shortly rising and slowly decaying waveform with a comparably low voltage, a continuous type signal showing a gradual rising and slowly decaying waveform with a very high voltage and a burst and continuous type signal with a high voltage, respectively. Results from the present work showed that the evolution of fatigue damage in the composite actuator with a PZT ceramic can be nondestructively identified via in situ AE monitoring and microscopic observations.

납에 의한 증기발생기 전열관 응력부식균열 평가 (Investigation of Steam Generator Tube Stress Corrosion Cracking Induced by Lead)

  • 김동진;황성식;김정수;김홍표
    • 한국압력기기공학회 논문집
    • /
    • 제5권2호
    • /
    • pp.1-6
    • /
    • 2009
  • Nuclear power plants (NPP) using Alloy 600 (Ni 75wt%, Cr 15wt%, Fe 10wt%) as a heat exchanger tube of the steam generator (SG) have experienced various corrosion problems by ageing such as pitting, intergranular attack (IGA) and stress corrosion cracking (SCC). In spite of much effort to reduce the material degradations, SCC is still one of important problems to overcome. Especially lead is known to be one of the most deleterious species in the secondary system that cause SCC of the alloy. Even Alloy 690 (Ni 60wt%, Cr 30wt%, Fe 10wt%) as an alternative of Alloy 600 because of outstanding superiority to SCC is also susceptible to leaded environment. An oxide on SG tubing materials such as Alloy 600 and Alloy 690 is formed and modified expanding to complex sludge throughout hideout return (HOR) of various impurities including Pb. Oxide formation and breakdown is requisite for SCC initiation and propagation. Therefore it is expected that an oxide property such as a passivity of an oxide formed on steam generator tubing materials is deeply related to PbSCC and an inhibitor to hinder oxide modification by lead efficiently can be found. In the present work, the SCC susceptibility obtained by using a slow strain rate test (SSRT) in aqueous solutions with and without lead was discussed in view of the oxide property. The oxides formed on Alloy 600 and Alloy 690 in aqueous solutions with and without lead were examined by using a transmission electron microscopy (TEM), an energy dispersive x-ray spectroscopy (EDXS), an x-ray photoelectron spectroscopy (XPS) and an electrochemical impedance spectroscopy (EIS).

  • PDF