• Title/Summary/Keyword: Interferon-inducible protein-10

Search Result 53, Processing Time 0.026 seconds

Dammarane-type triterpene oligoglycosides from the leaves and stems of Panax notoginseng and their antiinflammatory activities

  • Li, Juan;Wang, Ru-Feng;Zhou, Yue;Hu, Hai-Jun;Yang, Ying-Bo;Yang, Li;Wang, Zheng-Tao
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.377-384
    • /
    • 2019
  • Background: Inflammation is widespread in the clinical pathology and closely associated to the progress of many diseases. Triterpenoid saponins as a key group of active ingredients in Panax notoginseng (Burk.) F.H. Chen were demonstrated to show antiinflammatory effects. However, the chemical structures of saponins in the leaves and stems of Panax notoginseng (PNLS) are still not fully clear. Herein, the isolation, purification and further evaluation of the antiinflammatory activity of dammarane-type triterpenoid saponins from PNLS were conducted. Methods: Silica gel and reversed-phase C8 column chromatography were used. Furthermore, preparative HPLC was used as a final purification technique to obtain minor saponins with high purities. MS, NMR experiments, and chemical methods were used in the structural identifications. The antiinflammatory activities of the isolated saponins were assessed by measuring the nitric oxide production in RAW 264.7 cells stimulated by lipopolysaccharides. Real-time reverse transcription polymerase chain reaction was used to measure the gene expressions of inflammation-related gene. Results: Eight new minor dammarane-type triterpene oligoglycosides, namely notoginsenosides LK1-LK8 (1-8) were obtained from PNLS, along with seven known ones. Among the isolated saponins, gypenoside IX significantly suppressed the nitric oxide production and inflammatory cytokines including tumor necrosis $factor-{\alpha}$, interleukin 10, interferon-inducible protein 10 and $interleukin-1{\beta}$. Conclusion: The eight saponins may enrich and expand the chemical library of saponins in Panax genus. Moreover, it is reported for the first time that gypenoside IX showed moderate antiinflammatory activity.

IP-10 Decreases TNF-α Induced MUC5AC Expression in Human Airway Epithelial Cells: a Possible Relation with Little Sputum Production in Idiopathic Pulmonary Fibrosis (IP-10에 의한 기도상피세포에서의 TNF-α 유도 MUC5AC발현 억제: 특발성폐섬유증 환자의 적은 객담과의 연관성)

  • Kim, Seung Joon;Kang, Chun Mi;You, Moon Bin;Yoon, Hyung Kyu;Kim, Young Kyoon;Kim, Kwan Hyoung;Moon, Hwa Sik;Park, Sung Hak;Song, Jeong Sup
    • Tuberculosis and Respiratory Diseases
    • /
    • v.64 no.5
    • /
    • pp.347-355
    • /
    • 2008
  • Background: IPF is characterized by chronic, fibrosing inflammatory lung disease of unknown etiology. Typical symptoms of IPF are exertional dyspnea with nonproductive cough. Why patients with typical IPF have dry cough rather than productive cough, is unknown. IP-10 plays an important regulatory role in leukocyte trafficking into the lung. The present study investigated the effect of IP-10 in the pathogenesis of dry cough rather than productive cough in IPF patients. Methods: IP-10 concentration was measured by ELISA from BALF of IPF patients. To evaluate the role of IP-10 in mucin expression, the expression of the MUC5AC mucin gene was measured in NCI-H292 cells, a human pulmonary mucoepidermoid carcinoma cell line, after stimulation by TNF-${\alpha}$ with or without IP-10 pretreatment. EGFR-MAPK expression was also examined as a possible mechanism. Results: IP-10 levels were significantly higher in the BALF of IPF patients compared to healthy controls. IP-10 pretreatment reduced TNF-${\alpha}$ induced MUC5AC mucin expression by inhibiting the EGFR-MAPK signal transduction pathway in NCI-H292 cells. Conclusion: These findings suggest that little mucus production in IPF patients might be attributable to IP-10 overproduction, which inhibits the EGFR-MAPK signal transduction pathway required for MUC5AC mucin gene expression.

Perilla frutescens Sprout Extracts Protected Against Cytokine-induced Cell Damage of Pancreatic RINm5F Cells via NF-κB Pathway (들깨 새싹 추출물의 췌장 RINm5F 세포에서 NF-κB 경로를 통한 사이토카인에 의한 손상 예방 효과)

  • Kim, Da Hye;Kim, Sang Jun;Jeong, Seung-Il;Yu, Kang-Yeol;Cheon, Chun Jin;Kim, Jang-Ho;Kim, Seon-Young
    • Journal of Life Science
    • /
    • v.27 no.5
    • /
    • pp.509-516
    • /
    • 2017
  • Perilla frutescens (L.) Britton var. sprouts (PFS) is a plant of the labiatae family. The purpose of this work was to assess the preventive effects of PFS ethanolic extracts (PFSEs) on cytokine-induced ${\beta}$-cell damage. Cytokines, which are released by the infiltration of inflammatory cells around the pancreatic islets, are involved in the pathogenesis of type 1 diabetes mellitus. The combination of interleukin-$1{\beta}$ (IL-1), interferon-${\gamma}$ (IFN-${\gamma}$), and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) induced formation of reactive oxygen species (ROS). Accumulation of intracellular ROS led to ${\beta}$-cell dysfunction and apoptosis. PFSEs possess antioxidant activity and thus lead to downregulation of ROS generation. Cytokines decrease cell viability, stimulate the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and induce the production of nitric oxide (NO). PFSEs prevented cytokine-induced cell viability in a dose-dependent manner. Incubation with PFSE resulted in significant reduction in cytokine-induced NO production that correlated with reduced levels of the iNOS and COX-2 protein expression. Furthermore, PFSE significantly decreased the activation of nuclear factor ${\kappa}B$ (NF-${\kappa}B$) by inhibition of $I{\kappa}B{\alpha}$ phosphorylation in RINm5F cells. In summary, our results suggest that the protective effects of PFSE might serve to counteract cytokine-induced ${\beta}$-cell destruction. Findings indicate that consumption of Perilla frutescens (L.) Britton var. sprouts alleviates hyperglycemia-mediated oxidative stress and pro-inflammatory cytokine-induced ${\beta}$-cell damage and thus has beneficial anti-diabetic effects.