• Title/Summary/Keyword: Interference-to-noise ratio

Search Result 519, Processing Time 0.03 seconds

Analysis of Phase Noise and HPA Non-linearity in the OFDM/FH Communication System (OFDM/FH 시스템에서 위상잡음과 비선형 HPA의 특성분석)

  • Li, Ying-Shan
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.649-659
    • /
    • 2003
  • OFDM/FH communication system Is widely used in the wireless communication for the large capacity and high-speed data transmission. However, phase noise and PAPR (peak-to-average power ratio) are the serious problems causing performance impairment. In this paper, PLL (phase locked loop) frequency synthesizer with high switching speed is used for the phase noise model. SSPA and TWTA are considered for the nonlinear HPA model. Under these conditions and by approximating $e^{j{\phi}[m]}$ into $1 + j{\phi}[m]-\frac{1}{2}{\phi}^2[m]$ for the phase noise nonlinear approximation, SINR (signal-to-interference-noise-ratio) with nonlinear HPA and phase noise is derived in the OFDM/FH system. The bit error probabilities (BER) are found by computer simulation method and semi-analytical method. The simulation results closely match with the semi-analytical results.

  • PDF

An OCDMA Scheme to Reduce Multiple Access Interference and Enhance Performance for Optical Subscriber Access Networks

  • Park, Sang-Jo;Kim, Bong-Kyu;Kim, Byoung-Whi
    • ETRI Journal
    • /
    • v.26 no.1
    • /
    • pp.13-20
    • /
    • 2004
  • We propose a new optical code division multiple access (OCDMA) scheme for reducing multiple access interference (MAI) and enhancing performance for optical subscriber access networks using modified pseudorandom noise (PN)-coded fiber Bragg gratings with bipolar OCDMA decoders. Through the bipolar OCDMA decoder and the modified PN codes, MAI among users is effectively depressed. As the data are encoded either by a unipolar signature sequence of the modified PN code or its complement according to whether the data bit is 1 or 0, the bit error ratio (BER) can be more improved with the same signal to interference plus noise ratio over the conventional on-off shift keying-based OCDMA system. We prove by numerical analysis that the BER of the proposed bipolar OCDMA system is better than the conventional unipolar OCDMA system. We also analyze the spectral power distortion effects of the broadband light source.

  • PDF

Interference Analysis Between LEO Satellites for X-band Downlink (저궤도 위성 간 X-대역 하향링크에서의 간섭 영향성 분석)

  • Choo, Moogoong;Hwang, Inyoung;Bae, Minji;Seo, Inho;Ryu, Youngjae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.489-496
    • /
    • 2021
  • The X-band frequencies for transmitting the data from earth observation satellites are limited, so a number of satellites share the frequency bands. In order for multiple satellites to utilize same or adjacent frequency bands, International Telecommunication Union - Radiocommunication (ITU-R) limits power flux density (PFD), which overcomes the interferences among multiple satellites. However, even under the regulation, the interference effect needs to be analyzed when multiple satellites are connected to communicate with multiple ground stations (GSs) located close to each other. In this paper, the interference effect is analyzed based on signal to interference plus noise ratio (SINR) when two low earth orbit (LEO) satellites operating in different orbits are connected to communicate with randomly located two GSs in Korean peninsula. From the analysis results, it is confirmed that there can be interferences during 365 days operation even if the satellites meet PFD requirement, but the periods under interference effects are short and the interference can be foreseen.

A Leakage-Based Solution for Interference Alignment in MIMO Interference Channel Networks

  • Shrestha, Robin;Bae, Insan;Kim, Jae Moung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.424-442
    • /
    • 2014
  • Most recent research on iterative solutions for interference alignment (IA) presents solutions assuming channel reciprocity based on the suppression of interference from undesired sources by using an appropriate decoding matrix also known as a receiver combining matrix for multiple input multiple output (MIMO) interference channel networks and reciprocal networks. In this paper, we present an alternative solution for IA by designing precoding and decoding matrices based on the concept of signal leakage (the measure of signal power that leaks to unintended users) on each transmit side. We propose an iterative algorithm for an IA solution based on maximization of the signal-to-leakage-and-noise ratio (SLNR) of the transmitted signal from each transmitter. In order to make an algorithm removing the requirement of channel reciprocity, we deploy maximization of the signal-to-interference-and-noise ratio (SINR) in the design of the decoding matrices. We show through simulation that minimizing the leakage in each transmission can help achieve enhanced performance in terms of aggregate sum capacity in the system.

Joint Subcarrier and Bit Allocation for Secondary User with Primary Users' Cooperation

  • Xu, Xiaorong;Yao, Yu-Dong;Hu, Sanqing;Yao, Yingbiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3037-3054
    • /
    • 2013
  • Interference between primary user (PU) and secondary user (SU) transceivers should be mitigated in order to implement underlay spectrum sharing in cognitive radio networks (CRN). Considering this scenario, an improved joint subcarrier and bit allocation scheme for cognitive user with primary users' cooperation (PU Coop) in CRN is proposed. In this scheme, the optimization problem is formulated to minimize the average interference power level at the PU receiver via PU Coop, which guarantees a higher primary signal to interference plus noise ratio (SINR) while maintaining the secondary user total rate constraint. The joint optimal scheme is separated into subcarrier allocation and bit assignment in each subcarrier via arith-metric geo-metric (AM-GM) inequality with asymptotical optimization solution. Moreover, the joint subcarrier and bit optimization scheme, which is evaluated by the available SU subcarriers and the allocated bits, is analyzed in the proposed PU Coop model. The performance of cognitive spectral efficiency and the average interference power level are investigated. Numerical analysis indicates that the SU's spectral efficiency increases significantly compared with the PU non-cooperation scenario. Moreover, the interference power level decreases dramatically for the proposed scheme compared with the traditional Hughes-Hartogs bit allocation scheme.

A Hierarchical Preamble Design Technique for Efficient Handover in OFDM-based Multi-hop Relay Systems (OFDM 기반 다중 홉 릴레이시스템에서 효율적인 핸드오버를 위한 계층적 프리앰블 설계 기법)

  • Yoo, Hyun-Il;Kim, Yeong-Jun;Woo, Kyung-Soo;Kim, Jae-Kwon;Yun, Sang-Boh;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.342-351
    • /
    • 2008
  • In this paper, a new handover procedure for OFDM-based multi-hop relay systems is proposed to reduce the handover overhead by distinguishing inter-cell handover event from intra-cell handover event at the level of physical layer using a hierarchical design concept of preamble. A Subcell ID concept for identifying RS in a cell is proposed in the design of hierarchical manner, in addition to the existing Cell ID for identifying BS. The decision on either inter-cell handover or intra-cell handover is made by the signal quality measure of CBINR(Carrier of BS to Interference and Noise Ratio) and CRINR(Carrier of RS to Interference and Noise Ratio), provided by the hierarchical preamble. The proposed handover procedure can simplify scanning procedure and skip/simplify network re-entry procedure (capability negotiation, authorization, registration), resulting in a significant reduction of handover overhead.

Joint Transceiver Design for SWIPT in MIMO Interference Channel (MIMO 간섭채널에서 정보와 전력의 동시 전송 (SWIPT)을 위한 송수신기 설계)

  • Seo, Bangwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.55-62
    • /
    • 2019
  • In this paper, we consider K-user multiple-input multiple-output (MIMO) interference channel and present a transceiver design for simultaneous wireless information and power transfer (SWIPT) systems. In addition, we consider a SWIPT system where an information decoding receiver and an energy harvesting receiver are co-located at the same receiver. In the proposed scheme, signal-to-leakage plus noise ratio (SLNR) is used as a cost function and a transceiver is designed to satisfy the threshold of the harvested energy. More specifically, transmitter precoding vector, receiver filter vector, and power spitting factor are simultaneously designed to maximize SLNR with a constraint on the harvested energy. Through computer simulation, we compare the signal-to-interference plus noise ratio (SINR) performance of the proposed and conventional schemes. When a special condition among the number of transmit antennas, receive antennas, and users is satisfied, the proposed scheme showed better SINR performance than the conventional scheme at low signal-to-noise ratio (SNR) range. Also, when the condition is not satisfied, the proposed scheme showed better performance than the conventional scheme at all SNR range.

A Design of SINR Measurement Unit for IEEE 802.16m (IEEE 802.16m 시스템의 SINR 측정기의 설계)

  • Kim, Jun-Woo;Park, Youn-Ok;Kim, Whan-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12A
    • /
    • pp.1097-1104
    • /
    • 2010
  • This paper presents the signal-to-noise ratio (SNR) and signal-to-interference plus noise ratio (SINR) estimation based on A-Preamble of IEEE 802.16m IMT-Advanced WiMax system with simulation results. The downlink signal of IEEE 802.16m has two kinds of A-Preambles: the PA-Preamble and the SA-Preamble. This paper proposes the effective method of estimating SNR and SINR with A-Preambles, and also shows that this method can recognize the ICI(Inter-Carrier-Interference) occurrence due to doppler frequency. With the recognition of ICI, the mobile station can save the power by operating 1-tap equalizer in usual cases, and activating ICI mitigation module only when it perceives the ICI occurrence.

Performance of a Multitone CDMA System with Interference Canceller in a Multipath Fading Channel

  • Park, Seung-Keum;Kang, Byeong-Gwon;Chung, Hee-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.3E
    • /
    • pp.58-66
    • /
    • 1998
  • In this paper, we analyze the effects of interference canceller on the performance of multitone DS/CDMA system proposed by Vandendorpe[5]. There are various kinds of interference canceller suggested by different researchers including parallel and successive cancellers and we adopt a canceller used by Yoon et al.[9] which is a kind of parallel canceller. We consider three kinds of interferences, that is, multipath interference(MPI), interchannel interference(ICI) and multiple access interference(MAI). The ICI is the interference between multitones. The equations for variances. are derived for the inteferences and thermal noise used for signal to noise ratio calculation. We also consider RAKE reception over multipath channel which is modeled as lowpass equivalent linear filter and three stage interference canceller used for performance improvement. We show the performance results for number of canceller stage, diversity order and number of users and draw some conclusions that interference canceller is effective in multitone DS/CDMA system and the performance is further improved with the higher order of diversity and larger number of PN chips.

  • PDF

Dynamic Resource Allocation Scheme for Interference Mitigation in Multi-Hop Relay Networks (멀티 홉 릴레이 네트워크에서 간섭을 완화하는 동적 자원 할당 기법)

  • An, Kwanghoon;Kim, Taejoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.5
    • /
    • pp.103-108
    • /
    • 2016
  • In this paper, we propose a resource allocation scheme that guarantees transmission rate for each mobile stations by mitigating interference between a base station-to-mobile station link and a relay station-to-mobile station link. Specifically, we dynamically adjust the boundary between access zone and relay zone using signal to interference plus noise ratio. Moreover, we cluster the mobile stations under sever interference and manage the channel quality of these mobile stations by allocating additional radio resource. Our simulation results show that the proposed scheme can improve the efficiency of radio resources and ensure fairness among mobile stations.