• Title/Summary/Keyword: Interference Channel

Search Result 1,852, Processing Time 0.425 seconds

Interference Cancellation Scheme of End-to-End Method in Power Line Communication System for Smart Grid (스마트 그리드 시스템을 위한 전력선 통신 시스템의 종단 간 방식의 간섭 제거 기법)

  • Seo, Sung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.41-45
    • /
    • 2019
  • In this paper, we propose the interference cancellation scheme of end-to-end method algorithm for power line communication (PLC) systems in smart grid. The proposed scheme estimates the channel noise information of receiver by applying a deep learning model at the receiver. Then, the estimated channel noise is updated in database. In the modulator, the channel noise which reduces the power line communication performance is effectively removed through interference cancellation technique. As an impulsive noise model, Middleton Class A interference model was employed. The performance is evaluated in terms of bit error rate (BER). From the simulation results, it is confirmed that the proposed scheme has better BER performance compared to the theoretical model based on additive white Gaussian noise. As a result, the proposed interference cancellation with deep learning improves the signal quality of PLC systems by effectively removing the channel noise. The results of the paper can be applied to PLC for smart grid and general communication systems.

Rejection of Interference Signal Using Neural Network in Multi-path Channel Systems (다중 경로 채널 시스템에서 신경회로망을 이용한 간섭 신호 제거)

  • 석경휴
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.357-360
    • /
    • 1998
  • DS/CDMA system rejected narrow-band interference and additional White Gaussian noise which are occured at multipath, intentional jammer and multiuser to share same bandwidth in mobile communication systems. Because of having not sufficiently obtained processing gain which is related to system performance, they were not effectively suppressed. In this paper, an matched filter channel model using backpropagation neural network based on complex multilayer perceptron is presented for suppressing interference of narrow-band of direct sequence spread spectrum receiver in DS/CDMA mobile communication systems. Recursive least square backpropagation algorithm with backpropagation error is used for fast convergence and better performance in matched filter receiver scheme. According to signal noise ratio and transmission power ratio, computer simulation results show that bit error ratio of matched filter using backpropagation neural network improved than that of RAKE receiver of direct sequence spread spectrum considering of con-channel and narrow-band interference.

  • PDF

Minimum BER Power Allocation for OFDM-based Cognitive Radio Networks

  • Xu, Ding;Li, Qun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2338-2353
    • /
    • 2015
  • In this paper, the optimal power allocation algorithm that minimizes the aggregate bit error rate (BER) of the secondary user (SU) in a downlink orthogonal frequency division multiplexing (OFDM) based cognitive radio (CR) system, while subjecting to the interference power constraint and the transmit power constraint, is investigated under the assumption that the instantaneous channel state information (CSI) of the interference links between the secondary transmitter and the primary receiver, and between the primary transmitter and the secondary receiver is perfectly known. Besides, a suboptimal algorithm with less complexity is also proposed. In order to deal with more practical situations, we further assume that only the channel distribution information (CDI) of the interference links is available and propose heuristic power allocation algorithms based on bisection search method to minimize the aggregate BER under the interference outage constraint and the transmit power constraint. Simulation results are presented to verify the effectiveness of the proposed algorithms.

Adaptive cancellation method for suppression of adjacent channel interference (인접 채널 간섭 억제를 위한 적응제거 기법)

  • Lee, Jong-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.591-592
    • /
    • 2010
  • The strong adjacent interference in the receiver channel may cause difficulties in recovering the signal and also it degrades the system performance very seriously. Therefore, in this paper, the cancellation method was investigated to minimize these interference effects. It was supposed that the strong transmission power was leaked into the receiver channel. the usual LMS algorithm was applied for cancellation. Weight coefficients for adaptation converged very fast within 10 micro seconds and it showed the cancellation capability of 50dB approximately.

  • PDF

Novel Digital Cancelation Method in Presence of Harmonic Self-Interference

  • Ju, Hyungsik;Gwak, Donghyuk;Lee, Yuro;Kim, Tae-Joong
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.245-254
    • /
    • 2017
  • In-band full-duplex (IFD) communication has recently attracted a great deal of interest because it potentially provides a two-fold spectral efficiency increase over half-duplex communications. In this paper, we propose a novel digital self-interference cancelation (DSIC) algorithm for an IFD communication system in which two nodes exchange orthogonal frequency-division multiplexing (OFDM) symbols. The proposed DSIC algorithm is based on the least-squares estimation of a self-interference (SI) channel with block processing of multiple OFDM symbols, in order to eliminate the fundamental and harmonic components of SI induced through the practical radio frequency devices of an IFD transceiver. In addition, the proposed DSIC algorithm adopts discrete Fourier transform processing of the estimated SI channel to further enhance its cancelation performance. We provide a minimum number of training symbols to estimate the SI channel effectively. The evaluation results show that our proposed DSIC algorithm outperforms a conventional algorithm.

Interference Alignment in Two-way Relay Channel with Compute-and-Forward

  • Jiang, Xue;Zheng, Baoyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.593-607
    • /
    • 2016
  • This paper analyzes interference alignment in the two-way relay network with compute-and-forward in both single relay and multiple relays networks. The advantages of compute-and-forward over other relaying strategies are that it can relay only linear combinations of the useful signals and remove the noise. The algorithm proposed in this paper adopts the criterion of maximum SINR to derive the pre-coding matrix. The experimental results show that the performance of interference alignment in two-way relay channel via compute-and-forward is better than that of amplify-and-forward, and the total sum rate in the two-way multiple relay networks is larger than that in the two-way single relay networks.

Sum-Rate Optimal Power Policies for Energy Harvesting Transmitters in an Interference Channel

  • Tutuncuoglu, Kaya;Yener, Aylin
    • Journal of Communications and Networks
    • /
    • v.14 no.2
    • /
    • pp.151-161
    • /
    • 2012
  • This paper considers a two-user Gaussian interference channel with energy harvesting transmitters. Different than conventional battery powered wireless nodes, energy harvesting transmitters have to adapt transmission to availability of energy at a particular instant. In this setting, the optimal power allocation problem to maximize the sum throughput with a given deadline is formulated. The convergence of the proposed iterative coordinate descent method for the problem is proved and the short-term throughput maximizing offline power allocation policy is found. Examples for interference regions with known sum capacities are given with directional water-filling interpretations. Next, stochastic data arrivals are addressed. Finally, online and/or distributed near-optimal policies are proposed. Performance of the proposed algorithms are demonstrated through simulations.

Real-time implementation of distributed beamforming for simultaneous wireless information and power transfer in interference channels

  • Hong, Yong-Gi;Hwang, SeongJun;Seo, Jiho;Lee, Jonghyeok;Park, Jaehyun
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.389-399
    • /
    • 2021
  • In this paper, we propose one-bit feedback-based distributed beamforming (DBF) techniques for simultaneous wireless information and power transfer in interference channels where the information transfer and power transfer networks coexist in the same frequency spectrum band. In a power transfer network, multiple distributed energy transmission nodes transmit their energy signals to a single energy receiving node capable of harvesting wireless radio frequency energy. Here, by considering the Internet-of-Things sensor network, the energy harvesting/information decoding receivers (ERx/IRx) can report their status (which may include the received signal strength, interference, and channel state information) through one-bit feedback channels. To maximize the amount of energy transferred to the ERx and simultaneously minimize the interference to the IRx, we developed a DBF technique based on one-bit feedback from the ERx/IRx without sharing the information among distributed transmit nodes. Finally, the proposed DBF algorithm in the interference channel is verified through the simulations and also implemented in real time by using GNU radio and universal software radio peripheral.

Performance Analysis of Adaptive MMSE Receiver for CDMA Downlink

  • Nam, Ock-woo;Kim, Jae-hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.3
    • /
    • pp.435-441
    • /
    • 2001
  • In this paper, we proposed adaptive MMSE receiver, which use channel equalizer to eliminate the interference due to multi-path fading and adaptive filter to eliminate the multiple access interference. The unique features of proposed receiver schemes are as following. We use pilot channel to estimate the channel coefficients exactly and guard symbols which are inserted periodically to estimate channel coefficients exactly without interference from user signals. The length of channel equalizer also can be reduced with the help of guard symbols. Especially utilizing adaptive code-matched filter(AMMSE) when the user population is high and SNR is not low we accepts excellent performance improvement.

  • PDF

Performance Analysis and Evaluation of Mean Value-based Power Allocation in Spectrum Sharing Systems with Interference from the Primary Transmitter (주파수 공유 시스템에서 일차 사용자에 의한 간섭이 존재할 때 채널 평균값 기반 전력 할당 기법의 성능 분석 및 평가)

  • Lim, Sung-Mook;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.8
    • /
    • pp.77-83
    • /
    • 2012
  • In this paper, when interference caused by the primary user exists, the capacity performance of the mean value-based power allocation scheme is analyzed and evaluated under the outdated channel environment in spectrum sharing systems. When interference due to the primary transmitter affects the secondary receiver, we derive the upper bound of the ergodic capacity of the mean value-based power allocation scheme in a closed form. Furthermore, based on that, we investigate how interference due to the primary transmitter degrades the ergodic capacity of the secondary user. In simulation results, we show the performance degradation of the secondary user due to interference caused by the primary user. In addition, we show that the region where the mean value-based power allocation scheme outperforms the outdated channel information-based power allocation scheme is reduced as interference by the primary user increases.