• Title/Summary/Keyword: Interfacial shear stress

Search Result 148, Processing Time 0.025 seconds

Shear bond strength of a layered zirconia and porcelain according to treatment of zirconia liner (치과용 지르코니아 이장재 처리에 따른 지르코니아와 도재의 전단결합강도 비교)

  • Seo, Jeong Il;Park, Won Uk;Kim, Yang Geun
    • Journal of Technologic Dentistry
    • /
    • v.39 no.1
    • /
    • pp.43-52
    • /
    • 2017
  • Purpose: Physical and chemical properties of gold is most suitable to be restored of teeth to its original state. Recently zirconia was used instead of gold because of esthetical and intimacy of human body. Because of high strength and high abrasion resistance of zirconia, all zirconia artificial tooth lead to wear the original tooth of opposite site. To preserve this original tooth, zirconia artificial tooth covered with dental ceramic glass was used. When joining the zirconia core and dental ceramic glass, difference of their thermal expansion coefficient and wetting ability is generated the residual stress at interface lead to crack. In order to solve this problem, intermediate layer what is called zir-liner was imported to decrease the residual stress and increase the bonding strength. Methods: In this study, to identify the optimum conditions for manufacturing process, various methods to rough the surface of zirconia core were adopted, and vary the thickness of interlayer, and analyzed bond strength. Results: Bond strength of sanding specimens group showed higher than that of non-sanding specimens group, and once applied intermediate layer with sanding specimens showed highest bond strength with 28 MPa. SEM photomicrographs of zirconia cores fired at $1500^{\circ}C$ showed parallel straight lines in sanding and pockmarked surface in blasting surfaces as abrasion traces. Observation of the destruction section after shear test by SEM were carried out. Liner applied non-sanding group and non-liner applied sanding group all showed interfacial crack. Sandblasting group with non-liner showed remained dental ceramic glass on the surface of zirconia. Sandblasting group with once applied liner showed partially remained liner and dental ceramic glass on the surface of zirconia. XRD analysis revealed that sandblasting group showed higher monoclinic peaks than other specimens group and this result was due to the high collision energy for stress induced phase transformation. Conclusions: A study on the improvement of bonding strength between zirconia and dental ceramic glass steadily carried out for the future to practical use.

Evaluation of Microscopic Deformation Behaviors of Metal Matrix Composite due to Heat Treatment by means of SFC Test and Acoustic Emission (음향방출과 SFC 시험법에 의한 금속복합재료의 기지재 열처리 효과에 따른 미시적 변형기구 특성 평가)

  • Kang, Moon-Phil;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.381-389
    • /
    • 2000
  • Metal matrix composite(MMCs) have been rapidly becoming one of the strongest candidates for structural materials for high temperature application. It is well recognized that MMCs always experience at least one large cool-down from processing temperature before my significant applied service loading. Due to the large difference in thermal expansion coefficient between the fiber and matrix, large thermal residual stresses generally develop in composites. It was reported from many previous studies that the effects of thermal residual stress on mechanical properties and fracture behavior were much more complex and dramatic than conventional engineering materials. Therefore it is crucial to evaluate the effect of heat treatment which changes the characteristic of distribution of thermal residual stress in MMCs. Single fiber composite(SFC) test based on the balance in a micromechanical model is a quite convenient method to evaluate interfacial shear strength(IFSS) and the failure mode of composite. In this study the effect of heat treatment on IFSS and the microscopic failure mechanism of MMC is investigated by combining acoustic emission(AE) technique with SFC test. The characteristic of AE signal, IFSS and microscopic failure mechanism due to heat treatment condition is discussed.

  • PDF

Microfluidic Method for Measurement of Blood Viscosity based on Micro PIV (Micro PIV 를 기반한 혈액 점도 측정 기법)

  • Hong, Hyeonji;Jung, Mirim;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.3
    • /
    • pp.14-19
    • /
    • 2017
  • Increase of blood viscosity significantly changes the flow resistance and wall shear stress which are related with cardiovascular diseases. For measurement of blood viscosity, microfluidic method has proposed by monitoring pressure between sample and reference flows in the downstream of a microchannel with two inlets. However, it is difficult to apply this method to unknown flow conditions. To measure blood viscosity under unknown flow conditions, a microfluidic method based on micro particle image velocimetry(PIV) is proposed in this study. Flow rate in the microchannel was estimated by assuming velocity profiles represent mean value along channel depth. To demonstrate the measurement accuracy of flow rate, the flow rates measured at the upstream and downstream of a T-shaped microchannel were compared with injection flow rate. The present results indicate that blood viscosity could be reasonably estimated according to shear rate by measuring the interfacial width and flow rate of blood flow. This method would be useful for understanding the effects of hemorheological features on the cardiovascular diseases.

Study on Fluid Flow and Heat Transfer Characteristics in a Flat Heat Pipe (평판형 히트 파이프 내의 유체 유동 및 열전달 특성에 관한 연구)

  • Do, Kyu-Hyung;Kim, Sung Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2113-2118
    • /
    • 2007
  • In this study, a mathematical model for a thermal analysis of a flat heat pipe with a grooved wick structure is presented. The effects of the liquid-vapor interfacial shear stress, the contact angle, and the amount of liquid charge have been included in the proposed model. In particular, the axial variations of the wall temperature and the evaporation/condensation rates are considered by solving the one-dimensional conduction and the augmented Young-Laplace equations, respectively. In order to verify the model, the results obtained from the model are compared to existing experimental data.

  • PDF

Evaluation of Mechanical Properties of Carbon Fabrics Composite with Thermal Shock (열 충격에 따른 탄소 직물 복합재료의 역학적 특성 평가)

  • Kim, Jae-Hong;Lee, Jung-Ho;Jung, Kyung-Ho;Kang, Tae-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.79-82
    • /
    • 2005
  • In this study, mechanical properties of carbon fabrics composite under the thermal shock cycling were evaluated. Due to the interactions between fiber and polymer matrix, it is reasonable to conclude that both thermal cycles of thermal shock result in improvement of interlaminar shear strength(ILSS) for the longer conditioning time duration. The rise in ILSS may be attributed to the improved adhesion by cryogenic compressive stress and also by the post-curing strengthening effect. However, the flexural and tensile strength were decreased with increasing conditioning time of thermal cycle.

  • PDF

Study on the Pressure Drop Characteristics of Liquid Flow in Open Microchannels with the Countercurrent Vapor Flow (기체 대향류가 존재하는 미소 액체 개수로 유동의 압력강하 특성에 관한 이론 및 실험적 연구)

  • Kim Sung Jin;Nam Myeong Ryong;Seo Joung Ki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.747-754
    • /
    • 2005
  • Because the liquid-vapor interfacial shear stress affects seriously the liquid flow and the maximum heat transport rate of the grooved wick heat pipe, an accurate modeling for the pressure drop characteristics of the liquid flow is required. A novel method for calculating the liquid pressure drop and the velocity profile of an open channel flow in a microchannel with an arbitrary cross-section is suggested and validated by experiments. An experimental apparatus for the Poiseuille number of the liquid flow in open rectangular microchannels with the hydraulic diameters of 0.40mm, 0.43mm, 0.48mm is used in order to reproduce real situations in the grooved wick heat pipe. Analytic results from the suggested method are compared with the experimental data and they are in a close agreement with each other.

Effects of Interface on the Rheological Behaviors of PS/PP and EPDM/PP Polymer Blends (PS/PP와 EPDM/PP 블렌드의 유변학적 거동에 미치는 계면의 영향)

  • 이향목
    • The Korean Journal of Rheology
    • /
    • v.10 no.1
    • /
    • pp.14-23
    • /
    • 1998
  • 비상용성 고분자 브렌드계인 PS/PP와 EPDM/PP의 유변학적 거동에 미치는 계면의 영향을 알아보았고 그실험 결과를 Park & Lee 모델과 비교하였다. PS/PP와 EPDM/PP 블 렌드계에서의 계면에 의한 전단응력과 법선 응력차에의 기여도는 $textsc{k}$와λ(1-$\mu$), 두 개의 변 수에 의해 잘설명되었다. 특히 계면의 탄성적인 효과와 관련있는 법선응력차 항이 전단 응 력 항보다 더 뚜렷하게 나타났다. 30PS/70PP 블렌드 조성에서는 블렌드의 유변학적 특성이 주로 연속상을 이루는 고분자의 의해 좌우된 반면에 50PS/50PP 블렌드조성에서는 계면에 의한 영향이 더두드러지게 나타났다. 이것은 50/50 블렌드 조성에서 계면의 넓이가 증가한 것과 관계 있다. 그러나 EPDM/PP 블렌드계에서 계면에 의한 응력 항들이 모두 PS/PP 블 렌드계의 그것보다 매우 큰 값을 가졌지만, 그 상대적인 비를 나타내는 $textsc{k}$값은 작았다. 이것 은 블렌드를 구성하고 있는 순수한 성분의 법선응력차 값의 차이가 크기 때문이다. 또한 PS/PP 블렌드계에 대한 동적 계면장력을 Park & Lee 모델을 이용하여 예측해 보았다.

  • PDF

Detection of edge delamination in surface adhered active fiber composites

  • Wang, Dwo-Wen;Yin, Ching-Chung
    • Smart Structures and Systems
    • /
    • v.5 no.6
    • /
    • pp.633-644
    • /
    • 2009
  • A simple method has been developed to detect the bonding condition of active fiber composites (AFC) adhered to the surface of a host structure. Large deformation actuating capability is one of important features of AFC. Edge delamination in adhesive layer due to large interfacial shear stress at the free edge is typically resulted from axial strain mismatch between bonded materials. AFC patch possesses very good flexibility and toughness. When an AFC patch is partially delaminated from host structure, there remains sensing capability in the debonded part. The debonding size can be determined through axial resonance measured by the interdigitated electrodes symmetrically aligned on opposite surfaces of the patch. The electrical impedance and modal response of the AFC patch in part adhered to an aluminum plate were investigated in a broad frequency range. Debonding ratio of the AFC patch is in inverse proportion to the resonant frequency of the fundamental mode. Feasibility of in-situ detecting the progressive delamination between AFC patch and host plate is demonstrated.

Stabilization of Chlorosulfonated Polyethylene (CSM) Rubber Emulsion with Surfactant Mixture (혼합 계면활성제를 이용한 Chlorosulfonated Polyethylene (CSM) Rubber의 유화안정성 연구)

  • Lee, Eun-Kyoung;Choi, Seo-Young;Park, Soo-Jin
    • Elastomers and Composites
    • /
    • v.36 no.4
    • /
    • pp.246-254
    • /
    • 2001
  • In this work, the stabilization of chlorosulfonated polyethylene (CSM) rubber emulsion with surfactants, i.e., nonionic (Span 60) or anionic (Sodium laurylsulfate, SLS) surfactants, was investigated. The phase inversion emulsification by interfacial chemical characteristics was used to emulsify the CSM rubber. As a result, the emulsion phase separation was observed in the case of any single surfactant. However, there was no phase separation in the mixture of Span 60 and SLS in the context of emulsion droplet size tests and rheological behaviors. The droplet size decreases by increasing the surfactant mixture, resulting in increasing the viscosity. The viscosity and shear stress determined from shear rate show a shear thinning and yield behaviors. It was then found that the emulsion stabilization can be improved using the phase inversion emulsification method and surfactant mixture.

  • PDF

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF