• Title/Summary/Keyword: Interfacial reactions

Search Result 135, Processing Time 0.03 seconds

Equilibrium Thermodynamics of Chemical Reaction Coupled with Other Interfacial Reactions Such as Charge Transfer by Electron, Colligative Dissolution and Fine Dispersion: A Focus on Distinction between Chemical and Electrochemical Equilibria

  • Pyun, Su-Il;Lee, Sung-Jai;Kim, Ju-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.227-241
    • /
    • 2008
  • This article involves a unified treatment of equilibrium thermodynamics of the chemical reaction coupled with other interfacial (phase boundary) reactions. The modified (restrictive) chemical potential ${\mu}_k^+$, such as electrochemical potential, hydrostatic-chemical (mechanochemical) potential (exceptionally in the presence of the pressure difference) and surface-chemical potential, was first introduced under the isothermal and isobaric conditions. This article then enlightened the equilibrium conditions in case where the release of chemical energy is counterbalanced by the supply of electrical energy, by the supply of hydrostatic work (exceptionally in the presence of ${\Delta}p$), and finally by the release of surface energy, respectively, at constant temperature T and pressure p in terms of the modified chemical potential ${\mu}_k^+$. Finally, this paper focussed on the difference between chemical and electrochemical equilibria based upon the fundamentals of the isothermal and isobaric equilibrium conditions described above.

Interfacial reactions in Cu/NbTi multilayer thin films and superconducting wires (임게전류밀도 향상을 위한 Cu/NbTi다층박막과 초전도 선재에서의 계면반응)

  • 심재엽;백홍구;하동우;오상수;류강식
    • Electrical & Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.478-486
    • /
    • 1995
  • Cu/NbTi multilayer thin films and superconducting wires were fabricated and heat treated with conventional annealing and analyzed by differential scanning calorimetry (DSC) as a basic study for the enhancement of Jc. Interfacial reactions of Cu/NbTi multilayer thin films and superconducting wires were investigated with optical microscope, SEM, and XRD. According to the effective heat of formation (EHF) model, CU$\_$3/Ti was predicted as a first phase. However, considering the crystalline structure and thermodynamics, CuTi was predicted as a first phase. According to the results of DSC and XRD, CU$\_$2/Ti was found to be the first phase, followed by the formation Of CU$\_$4/Ti. The difference in first crystalline phase between the experimental result and the predicted one was discussed. In case of Cu/NbTi superconducting wires, the compounds formed at the Cu/NbTi interface grew with annealing time and the amount of compounds formed in Nb-47wt%Ti alloy was larger than that in Nb-50wt%Ti alloy. It seemed that the incubation time for the formation of compounds in Nb-50wt%Ti alloy was longer than that formed in Nb-47wt%Ti alloy. Also, the diffusion was the rate controlling step for the growth of compounds in all specimens. These compounds were formed at 500-600.deg. C for I hour annealing and, thus, the drawing time below I hour must be required to minimize the growth of compounds for the enhancement of Jc.

  • PDF

Interfacial Reactions of Co/Ti Multilayer System (Co/Ti 다층 박막 구조 시스템에서의 계면 반응에 관한 연구)

  • Lee, Sang-Hoon;Park, Se-Jun;Ko, Dae-Hong
    • Applied Microscopy
    • /
    • v.29 no.2
    • /
    • pp.255-263
    • /
    • 1999
  • We have investigated the interfacial reactions in Co/Ti multilayer thin films prepared by DC Magnetron sputtering system. We observed that the amorphous Co-Ti phase formed by SSAR (Solid State Amorphization Reaction) upon annealing at $200^{\circ}C$. Upon annealing treatments at $300^{\circ}C\;and\;400^{\circ}C$, a crystalline phase of CoTi formed at the Co/Ti interface. The sheet resistance of Co/Ti multilayer thin film increased by the formation of the amorphous phase at the Co/Ti interface, which decreased by the formation of new crystalline compound CoTi.

  • PDF

Interfacial Reaction and Shear Energy of Sn-52In Solder on Ti/Cu/Au UBM with Variation of Au Thickness and Reflow Temperature (Ti/Cu/Au UBM의 Au 두께와 리플로우 온도에 따른 Sn-52In 솔더와의 계면반응 및 전단 에너지)

  • Choi Jae-Hoon;Jun Sung-Woo;Oh Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.87-93
    • /
    • 2005
  • Interfacial reactions between 48Sn-52In solder and $0.1{\mu}m$ Ti/3 ${\mu}m$ Cu/Au under bump metallurgies(UBM) with various Au thickness of $0.1{\~}0.7{\mu}m$ have been investigated after solder reflow at $150^{\circ}C,\;200^{\circ}C$, and $250^{\circ}C$ for 1 minute. Ball shear strength and shear energy of the Sn-52In solder bump on each UBM was also evaluated. With reflowing at $150^{\circ}C$ and $200^{\circ}C$, $Cu_6(Sn,In)_5$ and $AuIn_2$ intermetallic compounds were formed at UBW solder interface. However, UBM was consumed almost completely with reflowing at $250^{\circ}C$. While ball shear strength was not consistent with UBM/solder reactions, ball shear energy matched well with UBM/solder reactions.

  • PDF

High Temperature Fracture Mechanisms in Monolithic and Particulate Reinforced Intermetallic Matrix Composite Processed by Spray Atomization and Co-Deposition (분무성형공정에 의한 세라믹미립자 강화형 금속간화합물 복합재료의 고온파괴거동)

  • Chung, Kang;Kim, Doo-Hwan;Kim, Ho-Kyung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1713-1721
    • /
    • 1994
  • Intermetallic-matrix composites(IMCs) have the potential of combing matrix properties of oxidation resistance and high temperature stability with reinforcement properties of high specific strength and modulus. One of the major limiting factors for successful applications of these composite at high temperatures is the formation of interfacial reactions between matrix and ceramic reinforcement during composite process and during service. The purpose of the present investigation is to develop a better understanding of the nature of creep fracture mechanisms in a $Ni_{3}Al$ composite reinforced with both $TiB_{2}$ and SiC particulates. Emphasis is placed in the roles of the products of the reactions in determining the creep lifetime of the composite. In the present study, creep rupture specimens were tested under constant ranging from 180 to 350 MPa in vacuum at $760^{\cric}C$. The experimental data reveal that the stress exponent for power law creep for the composite is 3.5, a value close to that for unreinforced $Ni_{3}Al$. The microstructural observations reveal that most of the cavities lie on the grain boundaries of the $Ni_{3}Al$ matrix as opposed to the large $TiB_{2}/Ni_{3}Al$ interfaces, suggesting that cavities nucleate at fine carbides that lie in the $Ni_{3}Al$ grain boundaries as a result of the decomposition of the $SiC_{p}$. This observation accounts for the longer rupture times for the monolicthic $Ni_{3}Al$ as compared to those for the $Ni_{3}Al/SiC_{p}/TiB_{2} IMC$. Finally, it is suggested that creep deformation in matrix appears to dominate the rupture process for monolithic $Ni_{3}Al$, whereas growth and coalescence of cavities appears to dominate the rupture process for the composite.

Interfacial Reactions between W Thin Film and 6H-SiC during Heat Treatments (열처리에 따른 W 박막과 6H-SiC의 계면반응에 관한 연구)

  • Shin, Yang-Soo;Lee, Byung-Taek
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.545-550
    • /
    • 1998
  • Phase reactions at W /6H- SiC interfaces during heat treatments were investigated by X- Ray diffractometer and transmission electron microscopy. No detectable reactions were found after annealing at up to 900$0^{\circ}C$ whereas formation of $W_5Si_3$ and $W_2C$$0^{\circ}C$ This result is consistent with a previous report that the reactions between 3C-SiC and W occurs at llOOoe, and suggests that $W_5Si_3$ and $W_2C$ are the stable phases in this temperature range.

  • PDF

Morphologies of Brazed NiO-YSZ/316 Stainless Steel Using B-Ni2 Brazing Filler Alloy in a Solid Oxide Fuel Cell System

  • Lee, Sung-Kyu;Kang, Kyoung-Hoon;Hong, Hyun-Seon;Woo, Sang-Kook
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.430-436
    • /
    • 2011
  • Joining of NiO-YSZ to 316 stainless steel was carried out with B-Ni2 brazing alloy (3 wt% Fe, 4.5 wt% Si, 3.2 wt% B, 7 wt% Cr, Ni-balance, m.p. 971-$999^{\circ}C$) to seal the NiO-YSZ anode/316 stainless steel interconnect structure in a SOFC. In the present research, interfacial (chemical) reactions during brazing at the NiO-YSZ/316 stainless steel interconnect were enhanced by the two processing methods, a) addition of an electroless nickel plate to NiO-YSZ as a coating or b) deposition of titanium layer onto NiO-YSZ by magnetron plasma sputtering method, with process variables and procedures optimized during the pre-processing. Brazing was performed in a cold-wall vacuum furnace at $1080^{\circ}C$. Post-brazing interfacial morphologies between NiO-YSZ and 316 stainless steel were examined by SEM and EDS methods. The results indicate that B-Ni2 brazing filler alloy was fused fully during brazing and continuous interfacial layer formation depended on the method of pre-coating NiO-YSZ. The inter-diffusion of elements was promoted by titanium-deposition: the diffusion reaction thickness of the interfacial area was reduced to less than 5 ${\mu}m$ compared to 100 ${\mu}m$ for electroless nickel-deposited NiO-YSZ cermet.

Sequential Formation of Multiple Gap States by Interfacial Reaction between Alq3 and Alkaline-earth Metal

  • Kim, Tae Gun;Kim, Jeong Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.129.2-129.2
    • /
    • 2013
  • Electron injection enhancement at OLED (organic light-emitting diodes) cathode side has mostly been achieved by insertion of a low work function layer between metal electrode and emissive layer. We investigated the interfacial chemical reactions and electronic structures of alkaline-earth metal (Ca, Ba)/Alq3 [tris(8-hydroxyquinolinato)aluminium] and Ca/BaF2/Alq3 using in-situ X-ray & ultraviolet photoelectron spectroscopy. The alkaline-earth metal deposited on Alq3 generates two energetically separated gap states in sequential manner. This phenomenon is explained by step-by-step charge transfer from alkali-earth metal to the lowest unoccupied molecular orbital (LUMO) states of Alq3, forming new occupied states below Fermi level. The BaF2 interlayer initially prevents from direct contact between Alq3 and reactive Ca metal, but it is dissociated into Ba and CaF2. However, as the Ca thickness increases, the Ca penetrates the interlayer to directly participate in the reaction with underlying Alq3. The influence of the multiple gap state formation by the interfacial chemical reaction on the OLED performance will be discussed.

  • PDF

Study on the Adsorption Behavior of FeS in Anaerobic Conditions (혐기성 조건에서 FeS의 흡착 거동 연구)

  • 김정배
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.505-512
    • /
    • 1997
  • The Interfacial characteristics between various heavy metals and hydrous FeS were investigated. Heavy metals which have lower sulfide solubilities than FeS undergoes the lecttice exchange reaction when these metal tons contact FeS In the aqueous phase. For heavy metals which have higher suede solubilities than FeS, these metal ions adsorb on the surface of FeS. Such characteristic reactions were interpreted by the soled solution formation theory. The presence of ligand such as EDTA reduced largely metal removal efficiency due to formation of metal-ligand complex In the solution. In an attempt to elucidate the Interfacial characteristics, zeta potential of the hydrous FeS In the absence and In the presence of various metal loons were measured and analyzed.

  • PDF

Fabrication and Mechanical Properties of $SiC_p/Al$ Composites by Pressureless Infiltration Technique (무가압침투법에 의한 $SiC_p/Al$ 복합재료의 제조 및 기계적 특성)

  • Jin, H.G.;Oh, M.S.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.74-81
    • /
    • 2001
  • The infiltration behavior of molten Al-alloy, microstructures, hardness, and the interfacial reactions of $SiC_p/Al$ composites fabricated by the pressureless infiltration technique were investigated. It was made clear that both the weight fraction of SiC reinforcement and additive Mg content considerably influenced on the infiltration behavior of the molten Al-alloy matrix. Complete infiltration of molten Al-alloy achieved under the conditions that weight fraction of SiC content is more than 30wt%, and additive Mg content is more than 9wt%. Interfacial region of Al-alloy matrix and SiC reinforcement phase, $Mg_2Si$ was formed by the reaction between Mg and SiC. Another reaction product AlN was also formed by the reaction between Al-alloy matrix and gas atmosphere nitrogen.

  • PDF